
Southwest Missouri Regional Traffic Safety Plan

ZERO TRAFFIC DEATHS IN SWMO

Notice:

The information contained within this document is intended solely for planning purposes and should not be construed as a final design for any project. All findings, recommendations, conceptual designs, cost estimates, and commentary are based on the current data and conditions, which are subject to change. Comprehensive analysis and detailed engineering design will be required prior to the implementation of any recommendations presented herein.

This notice aligns with the Harry S Truman Coordinating Council's (HSTCC) commitment to regional planning and the strategic objectives outlined in the Infrastructure Investment and Jobs Act (IIJA). This document was partially funded through grants from the Federal Highway Administration (FHWA), the Federal Transit Administration (FTA), and the United States Department of Transportation (USDOT). The views and opinions expressed in this document do not necessarily reflect those of the USDOT or any other federal agency.

Nondiscrimination Policy – Harry S Truman Coordinating Council (HSTCC):

The HSTCC strictly adheres to all civil rights provisions of applicable federal statutes and related authorities that prohibit discrimination in programs and activities receiving federal financial assistance. Accordingly, the HSTCC does not discriminate on the basis of race, sex, color, age, national origin, religion, or disability in the admission to, access to, or operation of its programs and activities, as well as in its hiring and employment practices. For any special communication needs or accommodation requests, please contact William Cline at (417) 456-4014 or via email at wcline@hstcc.org.

Table of Contents

Introduction	7
SWMO Crash Statistics	16
Serious Injuries and Fatalities	26
Contributing Factors	40
Achieving Zero Deaths by 2040	63
Alternative Transportation	86
High Injury Network	92
Equity and Demographics	105
Community Outreach	140
Goals and Objectives	146

Appendix A: Detailed Crash Data 2019-2023	163
Appendix B: Heat Maps and High Injury Network Maps	206
Appendix C: Traffic Safety Survey Data	216
Appendix D: Resolutions	227
Appendix E: Planned Projects and Needs list 2024-2025	235
Appendix F: Terms, Acronyms, and Definitions	241
Appendix G: Emergency Response and Medical Resources	245
Appendix H: Statistical Sources	250

KEY TERMS:

AARP - American Association of Retired Persons **ACS** - American College of Surgeons **ATLS** - Advanced Trauma Life Support **CDC** - Centers for Disease Control and Prevention **CDBG** - Community Development Block Grant FHWA - Federal Highway Administration FTA - Federal Transit Administration **HIN** - High-Injury Network **HSTCC** - Harry S. Truman Coordinating Council **IIHS** - Insurance Institute for Highway Safety **IIJA** - Infrastructure Investment and Jobs Act **JATSO** - Joplin Area Transportation Study Organization **MCHD** - McDonald County Health Department **MIEMSS** - Maryland Institute for Emergency Medical **Services Systems MoDOT** - Missouri Department of Transportation **NHTSA** - National Highway Traffic Safety Administration **RSCP** - Road Safety Comprehensive Plan SS4A - Safe Streets for All **SVI** - Social Vulnerability Index **TAC** - Technical Advisory Committee **TEAP - Traffic Engineering Assistance Program USDOT** - United States Department of Transportation Vision Zero - A strategy aimed at eliminating all traffic fatalities and severe injuries WHO - World Health Organization

Harry S. Truman Coordinating Council - Member Communities

Jasper County:

- Village of Airport Drive
- City of Alba
- City of Asbury
- Village of Avilla
- Town of Brooklyn Heights
- City of Carl Junction
- City of Carterville
- City of Carthage
- Village of Carytown
- City of Duenweg
- City of Duquesne
- Town of Fidelity
- City of Jasper
- City of Joplin
- Village of La Russell
- City of Neck City
- City of Oronogo
- City of Purcell
- Village of Reeds
- City of Sarcoxie
- City of Waco
- City of Webb City

Barton County:

- City of Golden City
- City of Lamar
- City of Lamar Heights
- City of Liberal
- City of Mindenmines

Newton County:

- Cliff Village
- Village of Dennis Acres
- City of Diamond
- Fairview
- City of Granby
- Village of Grand Falls Plaza
- Village of Leawood
- Town of Loma Linda
- City of Neosho
- Village of Newtonia
- Village of Redings Mill
- Village of Ritchey
- Village of Saginaw
- City of Seneca
- Village of Shoal Creek Estates
- Shoal Creek Drive Village
- City of Stark City
- Village of Stella
- Village of Wentworth

McDonald County:

- City of Anderson
- City of Goodman
- Village of Jane
- City of Lanagan
- City of Noel
- City of Pineville
- City of Southwest City

Executive Summary

The implementation of the Vision Zero Action Plan will be an ongoing process, involving regular evaluation and adjustment of our strategies based on data and feedback. By continuously monitoring our progress and making necessary changes, we can stay on track to achieve our goal of **zero traffic fatalities and serious injuries by 2040**. Together, we can create a safer, more equitable transportation system for all residents of Southwest Missouri.

Community engagement and stakeholder collaboration are essential components of this plan. We have worked closely with local boards, committees, and residents to gather input and feedback, ensuring that the strategies and actions we implement are aligned with the needs and priorities of our community. This collaborative approach helps build public support for Vision Zero initiatives and fosters a culture of traffic safety.

A significant aspect of the Vision Zero Action Plan is the focus on vulnerable road users, including pedestrians, cyclists, and motorcyclists. These groups are disproportionately affected by severe crashes, and our strategies prioritize their safety. By improving pedestrian and bicycle infrastructure, implementing safer speed limits, and enhancing road designs, we aim to reduce the risks for these users and ensure that our roads are safe for everyone.

The plan is built on the Safe System approach, which recognizes that human errors are inevitable, and thus, our transportation network must be designed to minimize the consequences of these mistakes. This involves creating safer road environments through engineering solutions, such as road diets and protected bike lanes, and promoting safer behaviors through education and policy changes. Our goal is to create a transportation system where even if a crash occurs, it does not result in fatal or serious injuries. The Vision Zero Action Plan for Southwest Missouri is a comprehensive initiative aimed at eliminating all traffic fatalities and severe injuries in Jasper, Newton, Barton, and McDonald counties by 2040. This ambitious goal reflects our commitment to the safety and well- being of all road users, acknowledging that any loss of life or serious injury on our roads is unacceptable. By adopting a data-driven approach and focusing on high-risk areas, we can identify the most critical safety issues and implement effective solutions.

Focusing on a five-year period from 2019 to 2023, a comprehensive study was conducted within the Harry S Truman Coordinating Council (HSTCC) region, examining the concerning trends in traffic-related fatalities and injuries in Southwest Missouri. During this time-frame, **212** individuals tragically lost their lives, while an additional **712** sustained serious injuries. These figures represent only a fraction of the broader impact, as countless others endured various levels of trauma, less severe injuries, and significant emotional and financial stresses.

The persistence of these statistics, both at the national level and within our local communities, underscores the urgent need for a thorough analysis. This study sought to investigate the specific locations, causes, and contributing factors associated with these incidents, with the ultimate objective of reducing and eventually eliminating such devastating outcomes.

The research encompassed a review of past and ongoing projects, as well as an assessment of municipal and county enforcement policies and safety programs currently in place across several communities within the region. Furthermore, the study identified opportunities for communities to refine existing policies or implement new ones that could enhance safety through capital projects and new development initiatives.

What is Vision Zero?

Vision Zero is a comprehensive strategy that aims to eliminate all traffic fatalities and severe injuries, while simultaneously promoting safe, healthy, and equitable mobility for everyone. This initiative goes beyond traditional road safety measures by addressing the root causes of traffic incidents and focusing on systemic changes. Vision Zero emphasizes the importance of a holistic approach that incorporates engineering, enforcement, education, and emergency response to create a transportation environment where all users, including drivers, pedestrians, and cyclists, can coexist safely. By adopting Vision Zero, communities commit to prioritizing human life and well-being over speed and convenience.

Central to Vision Zero is the Safe System approach, which acknowledges that human errors are inevitable and therefore, the design and operation of our roads must be adapted to account for these mistakes. Unlike conventional road safety practices that often place the onus on individual road users, the Safe System approach shifts the focus to creating a forgiving road environment. This involves implementing measures such as traffic calming, improved road design, and the use of advanced technology to reduce the likelihood of severe injuries or fatalities when accidents occur. By designing roads that accommodate human fallibility, Vision Zero aims to transform the way we think about traffic safety.

The Safe System approach is grounded in the understanding that safety is a shared responsibility among all stakeholders, including policymakers, urban planners, traffic engineers, law enforcement, and the community at large. It calls for a collaborative effort to create a cohesive network of safe roads, vehicles, and behaviors. This means integrating safety into every stage of transportation planning and development, from the initial design of infrastructure to the implementation of safety regulations and public awareness campaigns.

By fostering a culture of shared responsibility, Vision Zero seeks to ensure that every aspect of the transportation system works together to protect human lives. Moreover, Vision Zero places a strong emphasis on equity, recognizing that traffic fatalities and severe injuries disproportionately affect vulnerable populations, such as pedestrians, cyclists, children, the elderly, and low-income communities.

The initiative strives to create an inclusive transportation system that addresses these disparities and ensures that everyone has access to safe mobility options. This involves targeted interventions in high-risk areas, equitable distribution of resources, and inclusive community engagement to understand and address the specific needs of different groups. By prioritizing equity, Vision Zero aims to create a safer and more just transportation system for all.

9 Components of a Strong Vision Zero Commitment

Based on the experiences of early-adopter cities in the United States, these nine components have proven to be an effective high-level framework for communities considering a Vision Zero commitment. While these are not the only factors to consider, they are critical aspects to ensure a strong and lasting commitment to Vision Zero.

POLITICAL COMMITMENT

The highest-ranking local officials (Mayor, City Council, City Manager) make an official and public commitment to a Vision Zero goal to achieve zero traffic fatalities and severe injuries among all road users (including people walking, biking, using transit, and driving) within a set timeframe. This should include passage of a local policy laying out goals, timeline, stakeholders, and a commitment to community engagement, transparency, & equitable outcomes.

MULTI-DISCIPLINARY LEADERSHIP

An official city Vision Zero Taskforce (or Leadership Committee) is created and charged with leading the planning effort for Vision Zero. The Taskforce should include, at a minimum, high-ranking representatives from the Office of the Mayor, Police, Transportation (or equivalent) and Public Health. Other departments to involve include Planning, Fire, Emergency Services,

Public Works, District Attorney, Office of Senior Services, Disability, and the School District.

ACTION PLAN

Vision Zero Action Plan (or Strategy) is created within 1 year of initial commitment and is implemented with clear strategies, owners of each strategy, interim targets,

timelines, & performance measures.

EQUITY

City stakeholders commit to both an equitable approach to Vision Zero by establishing inclusive and representative processes, as well as equitable outcomes by ensuring measurable benchmarks to provide

enchmarks to provide safe transportation options for all road users in all parts of the city.

COOPERATION & COLLABORATION

A commitment is made to encourage meaningful cooperation and collaboration among relevant governmental agencies & community stakeholders to establish a framework for multiple stakeholders to set shared goals and focus on coordination and accountability.

SYSTEMS-BASED APPROACH

City leaders commit to and prioritize a systems-based approach to Vision Zero — focusing on the built environment, systems, and policies that influence behavior — as well as adopting messaging that emphasizes that these traffic losses are preventable.

DATA-DRIVEN

City stakeholders commit to gather, analyze, utilize, and share reliable data to understand traffic safety issues and prioritize resources based on evidence of the greatest needs and impact.

COMMUNITY ENGAGEMENT

Opportunities are created to invite meaningful community engagement, such as select community representation on the Taskforce, broader community

input through public meetings or workshops, online surveys, and other feedback opportunities.

For more visit the Vision Zero Network at visionzeronetwork.org. Questions or ideas? Contact leah@visionzeronetwork.org.

TRANSPARENCY

The city's process is transparent to city stakeholders and the community, including regular updates on the progress on the Action Plan and performance measures, and a yearly report (at minimum) to the local governing board (e.g., City Council).

VISION 44: CONETWORK

Vision Zero has had a significant impact on road safety in Sweden since its adoption in 1997. The country has consistently demonstrated one of the lowest road fatality rates in the world due to the implementation of Vision Zero policies.

Key Swedish Statistics:

Road Fatalities Reduction: In 1997, the year Vision Zero was launched, Sweden recorded about 7 road deaths per 100,000 people. By 2016, this had dropped to 2.8 deaths per 100,000 people, reflecting a nearly 60% reduction in fatalities.

Overall Fatalities: In 1997, Sweden had 541 road fatalities. By 2020, that number had decreased to 204 fatalities, showing a marked decline in traffic deaths over two decades.

Safety on the Roads: Between 2000 and 2020, Sweden managed to cut its total road fatalities by more than 50%, largely through innovations in road design, lower speed limits, improved vehicle safety, and enhanced enforcement measures. Fatality Rate: In 2020, Sweden's road fatality rate was 1.7 deaths per 100,000 people, one of the lowest globally and far below the European Union average of around 5 deaths per 100,000 people at that time.

Measures Contributing to the Decline:

Infrastructure Improvements: Sweden has implemented widespread infrastructure upgrades, including the installation of 2+1 roads (two lanes with a middle alternating lane for overtaking, separated by barriers), which have been instrumental in reducing head-on collisions. Speed Management: The introduction of lower speed limits in urban areas and high- risk zones has significantly decreased the severity of accidents.

Pedestrian and Cyclist Safety: Sweden has invested heavily in creating safe crossings, separated cycle paths, and traffic calming measures in cities to protect vulnerable road users.

Alcohol and Drug Policies: Sweden has stringent laws against impaired driving, contributing to a reduction in fatalities related to alcohol and drugs.

Vision Zero's success in Sweden demonstrates that a holistic approach combining infrastructure improvements, vehicle safety technologies, and strict enforcement can dramatically reduce road fatalities. The Swedish model has served as an inspiration for many

TRADITIONAL APPROACH

Traffic deaths are INEVITABLE PERFECT human behaviour Prevent COLLISIONS INDIVIDUAL responsibility Saving lives is EXPENSIVE

VISION ZERO

VS

Traffic deaths are **PREVENTABLE** Integrate **HUMAN FAILING** in approach Prevent **FATAL AND SEVERE CRASHES SYSTEMS** approach Saving lives is **NOT EXPENSIVE** other countries to adopt similar policies in their efforts to improve road safety. Several U.S. cities have adopted Vision Zero to eliminate traffic fatalities and severe injuries through a data-driven, multidisciplinary approach. Here are some key Vision Zero cities:

New York City, NY (2014): Lowered speed limits, redesigned intersections, expanded protected bike lanes, and increased traffic enforcement. NYC has seen reduced traffic fatalities.

San Francisco, CA (2014): Focused on pedestrian safety, street redesigns, and traffic calming measures.

Seattle, WA (2015): Lowered speed limits, increased pedestrian crossings, and added protected bike lanes, contributing to a decrease in fatalities.

Los Angeles, CA (2015): Targeted speed reductions, high-injury network analysis, and infrastructure improvements to enhance safety.

Boston, MA (2015): Implemented speed reductions, street redesigns, and safer crosswalks to enhance safety.

Portland, OR (2015): Used data to focus on speed management and multimodal street design for pedestrians and cyclists.

Chicago, IL (2017): Invested in pedestrian refuge islands, traffic signal upgrades, and protected bike lanes to reduce crash risks.

Washington, D.C. (2015): Improved pedestrian safety with safer crosswalks, curb extensions, and speed limit reductions.

Austin, TX (2015): Prioritized speed limit reductions, pedestrian and cyclist infrastructure, and safety awareness campaigns.

Denver, CO (2016): Targeted infrastructure improvements in high-crash areas.

These cities continue to prioritize infrastructure changes, enforcement, and public education to reduce traffic fatalities and serious injuries, following Vision Zero's holistic approach.

A Vision Zero City meets the following minimum standards:

- Sets clear goal of eliminating traffic fatalities and severe injuries
- The Mayor has publicly, officially committed to Vision Zero
- A Vision Zero plan or strategy is in place, or the Mayor has committed to doing so in clear time frame.
- Key departments (including Police, Transportation and Public Health) are engaged

The Safe System Approach

This Plan serves as the comprehensive roadmap for the Southwest Missouri Region's ambitious goal of achieving Vision Zero—zero traffic fatalities and serious injuries on its roadways. At its core, the Plan is built upon the Safe System Approach, a forward-thinking framework that prioritizes human life and health above all else. Unlike traditional safety methods that focus primarily on driver behavior, the Safe System Approach operates on the premise that while human mistakes are inevitable, the consequences should not be deadly or severely harmful.

This strategy emphasizes designing road systems that are inherently safer, recognizing that every element of the transportation network from the layout of streets and intersections to the vehicles and speed limits—is crucial in preventing crashes and reducing their severity when they occur.

The Plan incorporates a holistic perspective that considers the vulnerability of the human body and aims to minimize the physical impacts of accidents, ultimately creating a safer environment for all road users, including drivers, cyclists, and pedestrians. Through coordinated

efforts among engineers, policymakers, public health officials, law enforcement, and community advocates, this Plan charts the course toward a future where fatal and serious traffic injuries are eliminated in the Southwest Missouri Region.

Safe System Principles

Death/Serious Injury is Unacceptable

While no crashes are desirable, the Safe System approach prioritizes crashes that result in death and serious injuries, since no one should experience either when using the transportation system.

0

Responsibility is Shared

All stakeholders (transportation system users and managers, vehicle manufacturers, etc.) must ensure that crashes don't lead to fatal or serious injuries.

Humans Make Mistakes

People will inevitably make mistakes that can lead to crashes, but the transportation system can be designed and operated to accommodate human mistakes and injury tolerances and avoid death and serious injuries.

Safety is Proactive

Proactive tools should be used to identify and mitigate latent risks in the transportation system, rather than waiting for crashes to occur and reacting afterwards.

Humans Are Vulnerable

People have limits for tolerating crash forces before death and serious injury occurs; therefore, it is critical to design and operate a transportation system that is human-centric and accommodates human vulnerabilities.

Ь

Redundancy is Crucial

Reducing risks requires that all parts of the transportation system are strengthened, so that if one part fails, the other parts still protect people.

Core Principles

The Safe System Approach is guided by six core principles designed to create a safer transportation environment that minimizes the risk of fatal and serious injuries. These principles provide the foundation for Vision Zero efforts and road safety strategies. Below are the six key principles of the Safe System Approach:

1. Death and Serious Injuries are Unacceptable

The Safe System Approach starts with a moral imperative: no one should die or suffer serious injuries in traffic. It shifts the focus away from merely reducing crashes to eliminating fatalities and lifealtering injuries. Every road user's life is of paramount importance, and the system must be designed to protect all individuals.

2. Humans Make Mistakes

Recognizing that human errors are inevitable, the Safe System Approach does not rely solely on perfect human behavior. Instead, it acknowledges that mistakes will happen and designs the system to be forgiving of those errors, ensuring that they do not lead to fatalities or severe injuries.

3. Humans are Vulnerable

This principle emphasizes the physical vulnerability of the human body in a crash. The Safe System Approach aims to manage kinetic energy—through speed limits, safer vehicle designs, and protective infrastructure—so that when crashes occur, the force on the human body remains within survivable limits.

4. Responsibility is Shared

Road safety is a collective responsibility shared among everyone involved in the transportation system. This includes road designers, vehicle manufacturers, policymakers, enforcement agencies, and road users themselves. The approach encourages collaboration across sectors to create a safer system.

5. Safety is Proactive

The Safe System Approach takes a proactive stance on safety, focusing on preventing crashes before they happen rather than reacting to crashes after the fact. This involves using data, technology, and risk assessments to identify and address potential dangers early through design and policy interventions.

6. Redundancy is Crucial

Redundancy in safety measures ensures that if one part of the system fails, other layers of protection will still prevent fatalities and severe injuries. This principle leads to the development of multiple layers of safeguards, such as well-designed infrastructure, vehicle safety features, enforcement of traffic laws, and public education.

Safe System Elements

Making a commitment to zero deaths means addressing every aspect of crash risks through the five elements of a Safe System, shown below. These layers of protection and shared responsibility promote a holistic approach to safety across the entire transportation system. The key focus of the Safe System approach is to reduce death and serious injuries through design that accommodates human mistakes and injury tolerances.

The Safe System Approach shifts the focus from blaming individuals for crashes to creating a system that is resilient to human error. By addressing the five key elements— safe road users, safe vehicles, safe speeds, safe roads, and post-crash care—this approach aims to prevent fatalities and serious injuries, making the transportation network safer for everyone. Collaboration across sectors, including road designers, policymakers, vehicle manufacturers, health professionals, and the public, is essential to successfully implementing this approach and achieving the vision of zero traffic deaths.

Safe Road Users

While designing safer roads and vehicles is critical, road users also play a fundamental role in creating a safer system. Safe road user behaviors include adherence to traffic laws, such as obeying speed limits and traffic signals, using seatbelts, avoiding distractions, and never driving under the influence of drugs or alcohol. Education and enforcement efforts help promote these safe behaviors. Vulnerable users, such as pedestrians, cyclists, and motorcyclists, must be given special consideration, with infrastructure and policies in place to protect them. Encouraging a culture of safety, where road users take responsibility not only for their own safety but for the safety of others, is a key part of this element.

Safe Vehicles

Safe vehicles are equipped with advanced safety technologies that help prevent crashes and protect occupants and other road users. Vehicle safety includes features such as airbags, electronic stability control, lane-keeping assistance, automatic emergency braking, and crash avoidance systems. Ensuring that vehicles meet high safety standards and encouraging the adoption of newer technologies can significantly reduce the chances of crashes and mitigate the effects of collisions when they do occur. Encouraging regular vehicle maintenance and inspections is also crucial to ensure that safety systems perform as intended.

Safe Speeds

Managing vehicle speeds is essential to reducing both the likelihood of a crash and the severity of injuries when crashes occur. Safe speeds are those that are appropriate for the specific road conditions, road types, and the presence of vulnerable users. This can involve setting speed limits based on the context of the area, such as lower speeds in residential or pedestrian-heavy zones and higher speeds on highways. Implementing speed management measures like traffic calming techniques, speed bumps, and automated speed enforcement can also play a key role. The relationship between speed and injury severity is critical; lower speeds reduce stopping distances and impact forces, helping to save lives.

Safe Roads

Safe roads are designed to prevent crashes from occurring and to reduce the severity of crashes when they do happen. This involves creating roadways that are forgiving of human error and ensure that road designs account for the needs of all users—pedestrians, cyclists, motorcyclists, and drivers. Elements such as roundabouts, medians, pedestrian crossings, protected bike lanes, and clear road signage are examples of design features that contribute to safe roads. The goal is to ensure that roads are not just efficient for travel but inherently safer by design, minimizing the opportunities for conflict between different road users.

Post-Crash Care

Despite the best efforts to prevent crashes, some crashes will inevitably occur. Post-crash care focuses on ensuring that when accidents do happen, those involved receive timely and effective medical attention. This includes quick emergency response times, the availability of trained first responders, well-equipped hospitals and trauma centers, and the ability to coordinate care across different services. Improving the survivability of crashes also involves measures like encouraging bystander first aid training and ensuring that the road network is accessible for emergency vehicles. Post-crash care also involves providing rehabilitation for those injured in crashes to facilitate recovery and reintegration into everyday life.

THE SAFE SYSTEM APPROACH VS. TRADITIONAL ROAD SAFETY PRACTICES

Traditional

Safe System

Prevent crashes	Prevent deaths and serious injuries
Improve human behavior ————	Design for human mistakes/limitations
Control speeding	Reduce system kinetic energy
Individuals are responsible ———>	Share responsibility
React based on crash history ———>	Proactively identify and address risks

Whereas traditional road safety strives to modify human behavior and prevent all crashes, the Safe System approach also refocuses transportation system design and operation on anticipating human mistakes and lessening impact forces to reduce crash severity and save lives.

Southwest Missouri Crash Statistics (2019-2023)

This section provides an in-depth analysis of traffic crashes in Jasper, Newton, McDonald, and Barton counties in Southwest Missouri. The data

Traffic fatalities in Jasper, Newton, Barton, and McDonald counties have been a persistent and serious issue over the past five years. The data from 2019 to 2023 reflects troubling trends, with significant implications for public safety and infrastructure planning in Southwest Missouri.

covers various aspects, including crash types, severity levels, lighting and weather conditions, and other contributing factors such as driver behavior and road conditions. The analysis identifies key trends, such as high-risk locations and peak times for crashes, and highlights specific areas of concern, like intersections and rural roads. Following sections will present

data-driven recommendations for improving road safety, such as targeted enforcement, infrastructure upgrades, public awareness campaigns, and policy changes aimed at reducing crashes and enhancing overall traffic safety in the region.

Traffic Crash Summary for Southwest Missouri Counties

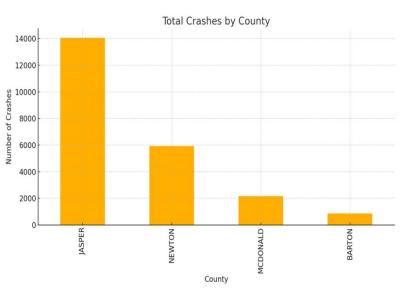
□ Jasper County:

- Total crashes: 14,067
- Fatal crashes: 81
- Minor injuries: 2,466
- Property damage: 11,210
- Serious injuries: 310

□ Newton County:

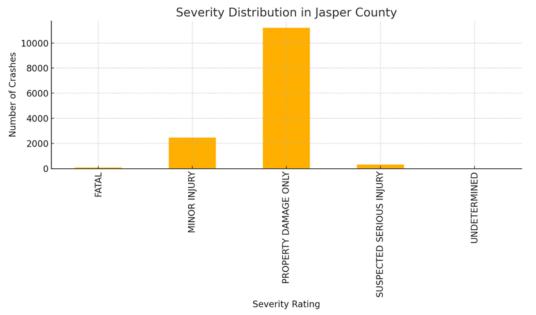
- Total crashes: 5,936
- Fatal crashes: 77
- Minor injuries: 1,194
- Property damage: 4,422
- Serious injuries: 243

□ McDonald County:


- Total crashes: 2,160
- Fatal crashes: 36
- Minor injuries: 466
- Property damage: 1,541
- Serious injuries: 117

• Barton County:

- Total crashes: 871
- Fatal crashes: 18
- Minor injuries: 159
- Property damage: 652
- Serious injuries: 42


Total crashes: 23,034

Fatal crashes: 212 Minor injuries: 4,285 Property damage: 17,825 Serious injuries: 712

Jasper County Crash Data Analysis

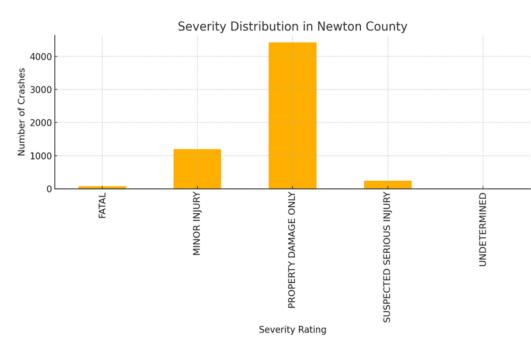
Jasper County accounts for the largest number of crashes among the four counties, with a total of 14,067 crashes recorded. Key observations include:

Fatal Crashes: Jasper County experienced **81 fatal crashes**. These incidents highlight the need for focused interventions in highrisk areas.

The presence of major highways like I-44 and U.S. Route 71, combined with high traffic volumes, contributes to the elevated risk of accidents. The county

has seen a mixture of urban and rural crash sites, with contributing factors including speeding, impaired driving, and failure to use seat belts. The rise in fatalities is often linked to these high-risk behaviors, particularly in areas with heavy traffic congestion and intersections known for frequent accidents.

In 2020, for example, Jasper County reported an increase in fatalities compared to the previous year, highlighting the ongoing risks associated with both urban and rural roadways. The urban areas, such as Joplin, face challenges with intersection-related crashes, while rural stretches of road see higher speeds and less compliance with seat belt laws, exacerbating the severity of crashes.


Injury Crashes: Minor injuries occurred in **2,466 crashes**, while serious injuries were reported in **310 crashes**. Injury-related crashes make up a significant portion of the total crashes in the county.

Property Damage Only: A large portion of crashes (**11,210 crashes**) resulted in property damage only. This indicates that while many crashes did not result in physical harm to individuals, they still had a significant economic impact.

Common Crash Causes: Crashes were often caused by rear-end collisions, left turns, and out-of-control vehicles, particularly on roads like MO 171 S and MO 43 S.

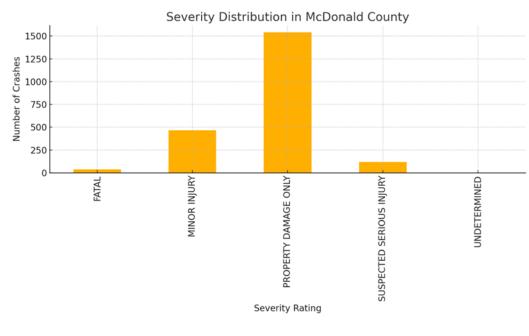
Newton County Crash Data Analysis

Newton County reported 5,936 crashes, making it the second-highest crash-prone county in the region. The data shows: ...

Fatal Crashes: There were **77 fatal crashes** in Newton County, indicating areas of high risk that require immediate attention.

The rural nature of much of the county, with winding roads and less infrastructure investment compared to more urbanized areas, creates conditions where crashes can be particularly severe. Like Jasper, Newton

County's fatalities are often tied to high speeds, lack of seat belt use, and impaired driving. Particularly concerning in Newton County are incidents on rural roads where emergency response times can be delayed. These delays can mean the difference between life and death in serious crashes, making the need for improved infrastructure and emergency services a critical issue.


Injury Crashes: 1,194 crashes resulted in minor injuries, while **243 crashes** led to serious injuries.

Property Damage Only: Property damage was the most common outcome, with **4,422 crashes**.

Crash Causes: Similar to Jasper County, rear-end and out-of-control collisions were prevalent, particularly on state highways.

McDonald County Crash Data Analysis

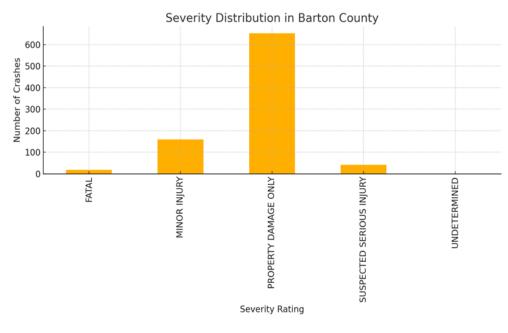
McDonald County, with 2,160 crashes, shows lower overall crash numbers but still poses significant safety concerns. ...

Fatal Crashes: The county experienced **36 fatal crashes**, a relatively high percentage of total crashes.

This county, known for its scenic routes and tourist traffic, particularly in the summer months, faces unique challenges. The influx of tourists unfamiliar with the roads, combined with the local traffic, can lead to dangerous

situations, particularly on the narrow, winding roads that characterize much of the county's landscape.

Fatalities in McDonald County are often linked to head-on collisions and single-vehicle crashes where the driver loses control on a curve. The rural nature of the county means that, similar to Barton and Newton, emergency response can be delayed, increasing the likelihood of fatalities.


Injury Crashes: 466 minor injuries and 117 serious injuries were recorded.

Property Damage Only: Property damage accounted for 1,541 crashes.

Key Insights: Crashes often occurred in rural areas with poor lighting and challenging road conditions (e.g., hilly terrain, sharp curves). In addition, adverse weather conditions such as rain and snow contributed to crashes.

Barton County Crash Data Analysis

Barton County reported 871 crashes, the lowest number among the four counties. ...

Fatal Crashes: **18 fatal crashes** occurred, representing a small yet impactful portion of total crashes.

Barton County, with a smaller population and fewer major highways, nonetheless faces significant challenges with traffic safety. The county's fatalities often occur on rural roads, where speeding and single-vehicle crashes are

more common.

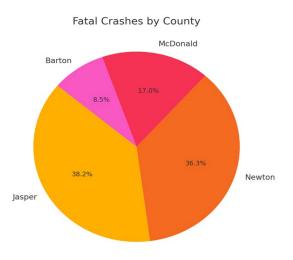
While the number of fatalities here is lower than in Jasper or Newton, the severity of crashes tends to be high due to the same factors that affect rural areas—higher speeds, delayed emergency response, and sometimes, less stringent enforcement of traffic laws.

One key issue in Barton County is the presence of older roadways that may not meet modern safety standards. These roads, combined with risky driving behaviors, contribute to a persistent risk of serious crashes.

Injury Crashes: Minor injuries were reported in **159 crashes**, while **42 crashes** involved serious injuries.

Property Damage Only: The majority of crashes (652 crashes) resulted in property damage only.

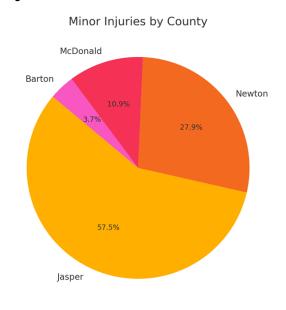
Comparative Analysis


A comparative analysis of the four counties reveals several important trends and distinctions in traffic safety outcomes:

Crash Volume:

Jasper County leads by a significant margin in terms of total crashes, with 14,067 incidents, far exceeding the crash volumes of the other counties. This could be attributed to its larger population, higher traffic density, or possibly more complex roadway infrastructure. The county's crash volume is more than double that of Newton County (5,936), which ranks second in total crashes, and nearly seven times higher than Barton County (871), which recorded the fewest crashes among the four counties. McDonald County, with 2,160 crashes, also has a relatively lower crash volume in comparison. These differences highlight the variability in traffic conditions across the region, with Jasper County facing more significant challenges in terms of roadway safety.

Fatalities:


Despite Jasper County's dominance in overall crash numbers, Newton County presents a noteworthy trend in fatal crashes. Newton County experienced 77 fatal crashes, nearly as many as Jasper County, which reported 81 fatalities, despite having significantly fewer total crashes. This suggests that crashes in Newton County may be more severe or occur in more hazardous locations. McDonald County and Barton County reported 36 and 18 fatal crashes, respectively, which are lower in absolute terms but still represent a significant percentage of their total crashes. This analysis indicates that Newton County has a disproportionately high rate of fatal crashes, which

could point to specific road conditions, driving behaviors, or other risk factors contributing to this trend.

Injuries:

In terms of injury-related crashes, Jasper and Newton counties lead, though with different patterns. Jasper County recorded 2,466 minor injuries, indicating a high frequency of less severe injury crashes. Newton County, while having fewer total minor injuries (1,194), showed a concerning number of serious injuries, with 243 incidents compared to Jasper County's 310.

43.5%

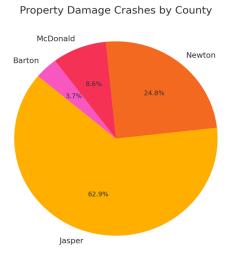
Barton

lasper

McDonald

34.1%

Newton


County's 310. McDonald and Barton counties had considerably fewer injuries, with McDonald County reporting 466 minor injuries

and 117 serious injuries, and Barton County documenting 159 minor injuries and 42 serious injuries. These figures suggest that while Jasper County experiences a higher volume of crashes overall, Newton County's crashes may tend to result

in more severe outcomes, particularly in terms of fatalities and serious injuries.

Property Damage:

Crashes resulting in property damage without physical injury represent the majority of incidents across all four counties. Jasper County again leads in this category, with 11,210

property damage-only crashes, followed by Newton County with 4,422. McDonald County and Barton County reported 1,541 and 652 property damage-only crashes, respectively. The high number of property damage-only crashes indicates that while many incidents did not result in physical harm, they still had significant financial implications due to vehicle and infrastructure damage. This dominance of property damage crashes across all counties suggests that while the focus is often on injury and fatality prevention, there remains a need to address the financial and logistical impacts of non-injury crashes.

Conclusion:

This comparative analysis highlights the multifaceted nature of traffic safety challenges across the four counties of Jasper, Newton, McDonald, and Barton in Southwest Missouri. The data reveals that each county faces distinct issues that require tailored approaches to improve road safety outcomes.

Jasper County, with a population of approximately 122,000 and a significantly higher crash volume, emerges as a critical area of concern. The county's higher population density and increased traffic likely contribute to the elevated number of crashes. Consequently, targeted efforts must be prioritized in Jasper to reduce the overall crash count. Strategies might include enhanced traffic enforcement, improvements to road design, and community education initiatives that promote safer driving behaviors. By addressing these factors, Jasper County can work towards not only reducing the number of crashes but also lessening the overall burden on emergency services and local infrastructure.

Newton County, with a population of around 58,000, presents a different set of challenges. While its total crash volume may be lower than Jasper's, the alarming rate of fatal and serious injury crashes suggests that certain high-risk areas or behaviors are leading to more severe outcomes. This could be due to factors such as speeding, impaired driving, or dangerous road conditions. Therefore, safety interventions in Newton County must focus on these high-risk areas, perhaps through targeted enforcement, public awareness campaigns, and infrastructure improvements like better lighting, signage, and the addition of safety barriers in high-crash locations. Newton County's emphasis should be on preventing the most serious outcomes, especially fatalities and life-altering injuries.

McDonald County, with a population of about 22,000, and Barton County, with a population of around 11,600, experience fewer crashes overall but are not without their own safety concerns. Despite the lower numbers, the incidents in these counties still involve significant safety risks, particularly when it comes to reducing fatalities and serious injuries. Rural roadways in these areas often present unique challenges, such as long response times for emergency services and higher speeds, which can contribute to the severity of crashes. Additionally, infrastructure in these areas may not be as well-maintained or equipped to handle modern traffic patterns, further exacerbating safety risks. Addressing these concerns might involve improving road conditions, increasing signage and visibility, and developing community-based safety programs aimed at promoting safer driving habits.

A common theme across all four counties is the predominance of property damage as the most frequent outcome of traffic crashes. This reflects the broader national trend where a majority of crashes result in damage to vehicles or infrastructure, rather than human harm. However, the human toll in terms of fatalities and injuries remains a pressing concern that requires sustained attention in the development of traffic safety plans. While reducing property damage is important for economic and logistical reasons, the primary focus of safety initiatives should be on preventing the loss of life and reducing the long-term impacts of serious injuries. These efforts must be supported by data-driven policies, cross-county collaboration, and consistent evaluation of implemented strategies to ensure progress is made.

In conclusion, addressing the unique traffic safety challenges in Jasper, Newton, McDonald, and Barton counties requires a comprehensive and multifaceted approach. By focusing on reducing crashes in Jasper County, targeting fatal and serious injury crashes in Newton County, and addressing specific safety concerns in McDonald and Barton counties, the region can make strides toward improving road safety for all its residents. Continued commitment to safety planning, infrastructure improvement, and policy development will be essential in achieving these goals and mitigating the human and economic toll of traffic incidents across Southwest Missouri.

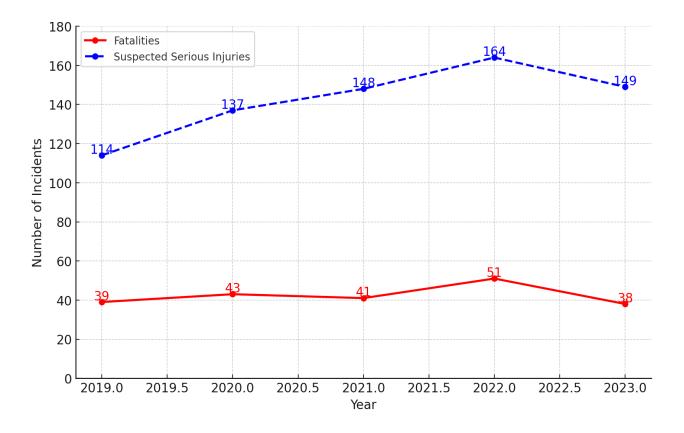
Crash Summary by Mode

Based on a comprehensive analysis of traffic crashes in Jasper, Newton, McDonald, and Barton counties in Southwest Missouri, the following findings provide insight into the distribution and nature of crashes by mode:

Vehicle-Related Crashes: The majority of crashes fall under the vehicle category, with a total of 22,815 incidents recorded. This category encompasses crashes involving motor vehicles, animals, and other types of unspecified collisions. Within this category, common crash types include rear-end collisions, which occur when one vehicle strikes another from behind; right-angle collisions, often happening at intersections when one vehicle fails to yield; and sideswipes, typically occurring when two vehicles are traveling parallel and collide side-to-side. These types of crashes are influenced by factors such as driver behavior, road conditions, visibility, and weather. Crashes involving animals, like deer and dogs, also contribute to this category and can occur frequently on rural roads.

Pedestrian Crashes: A total of 124 crashes involved pedestrians. These crashes are significant due to the severe nature of injuries that pedestrians often sustain in such incidents. Pedestrian crashes tend to occur in areas with heavy foot traffic, such as urban centers, near schools, or crosswalks. They are influenced by factors such as vehicle speed, driver attentiveness, and pedestrian visibility. Although these crashes represent a smaller proportion of total incidents compared to vehicle crashes, they pose a high risk of serious injury or fatality, emphasizing their impact despite the lower frequency.

Bicycle Crashes: There were 95 crashes involving


bicycles across the counties. Bicycle crashes often occur in areas where cyclists share the road with motor vehicles, such as on city streets or rural roads with limited cycling infrastructure. These crashes can result in severe injuries due to the vulnerability of cyclists compared to vehicle occupants. Factors contributing to bicycle crashes include a lack of dedicated bike lanes, poor road surface conditions, driver inattention, and inadequate visibility of cyclists, especially during nighttime or low-light conditions.

While the data illustrates that vehicle-related crashes dominate the overall crash landscape in the four counties, crashes involving pedestrians and bicycles, while less frequent, have a disproportionately high potential for severe injuries and fatalities. Understanding these patterns is essential for stakeholders to grasp the complexity of traffic safety challenges in these regions. By analyzing the specific conditions under which different types of crashes occur, including the mode of travel, contributing factors such as road type, and environmental conditions, we can better understand the safety dynamics at play in these counties.

Serious Injuries and Fatalities

The issue of roadway deaths and injuries in Southwest Missouri, as depicted in the data from 2019 to 2023, underscores an urgent need for sustained and enhanced traffic safety interventions. The region has experienced fluctuations in fatal traffic incidents but, more concerning, an upward trajectory in suspected serious injuries. This indicates that while some efforts may have helped mitigate the most severe crashes, there are deeper, systemic issues contributing to the rise in serious injuries, which can have long-lasting effects on individuals, families, and communities.

TRAFFIC FATALITIES AND SERIOUS INJURIES IN JASPER, BARTON, NEWTON, AND MCDONALD COUNTIES (2019-2023)

Fatalities Trend

The graph shows that traffic fatalities in Southwest Missouri have remained relatively consistent, with annual figures ranging from 38 to 51 incidents. This stability, however, is not a sign of improvement. The data reveals that despite safety measures, fatal crashes remain a persistent and deadly issue for the region's road users.

The high point in 2022, with 51 fatalities, suggests that external factors such as increased travel post-pandemic or other socioeconomic conditions may have contributed to a spike in deaths.

The subsequent drop to 38 fatalities in 2023, while promising, does not necessarily indicate a trend towards sustained improvement, as fatalities have fluctuated unpredictably over the years. This inconsistency reflects the difficulty in achieving long-term reductions in fatal crashes without a comprehensive and sustained safety strategy that addresses both driver behavior and road conditions.

Serious Injuries on the Rise

Perhaps the most concerning trend reflected in the data is the significant and steady rise in suspected serious injuries from traffic incidents. In 2019, there were 114 serious injuries reported, but by 2022, that number had increased dramatically to 164 incidents—a nearly 44% increase over just four years. Although 2023 saw a slight reduction to 149 incidents, the overall trend indicates that many drivers, pedestrians, cyclists, and other road users are facing life-altering consequences from traffic crashes. Serious injuries can result in long-term disabilities, loss of income, and significant healthcare costs, not only for individuals but also for the region as a whole. These injuries place a strain on local healthcare systems and rehabilitation services and can diminish the quality of life for entire families.

The rising numbers suggest that the region is experiencing more frequent and severe crashes, particularly those that result in incapacitating injuries. This points to potential gaps in safety infrastructure, such as the lack of adequate pedestrian crossings, poor road maintenance, and limited protective barriers that could prevent the most serious accidents. It also highlights the need for better enforcement of traffic laws, such as speed limits, seat belt use, and driving under the influence, as well as broader public education campaigns about road safety.

Broader Implications

The impact of these fatal and serious injury incidents extends beyond the individual victims. They have a ripple effect on the community, leading to increased insurance premiums, lost productivity, and a general sense of unease about road safety. For local governments, these incidents represent both a moral and economic burden, necessitating investment in safety improvements, law enforcement, and emergency response services.

Additionally, the data raises concerns about equity and access to safe transportation in Southwest Missouri. Many of the region's roadways may not be designed to accommodate the growing traffic and evolving modes of transportation, including cycling and walking.

Rural areas in particular might lack the necessary infrastructure—such as adequate lighting, clear signage, and safe pedestrian pathways—that are often taken for granted in more urban settings. Addressing these disparities in roadway safety is crucial to ensuring that all residents, regardless of where they live, can travel safely.

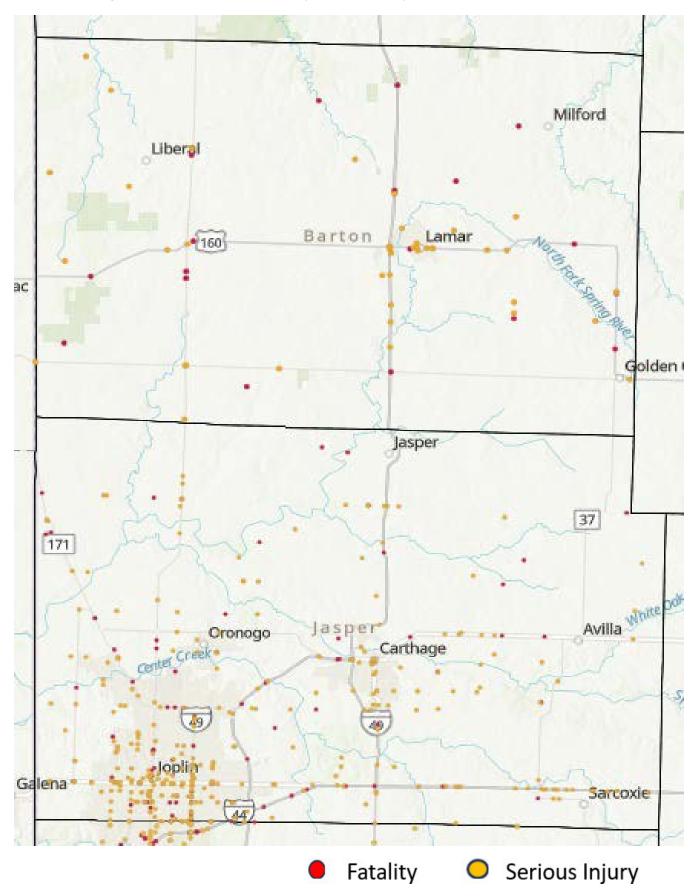
The data from 2019 to 2023 serves as a clear call to action for Southwest Missouri. While some progress may have been made in reducing fatalities, the rise in serious injuries signals that there is still much work to be done. A concerted effort is needed from all stakeholders—local governments, law enforcement, healthcare providers, and the public—to prioritize roadway safety and ensure that everyone on the roads, from drivers to pedestrians, can travel without fear of injury or death. This is not just a matter of policy; it is a matter of saving lives and preserving the well-being of the community for years to come.

Common Severity Factors and Implications

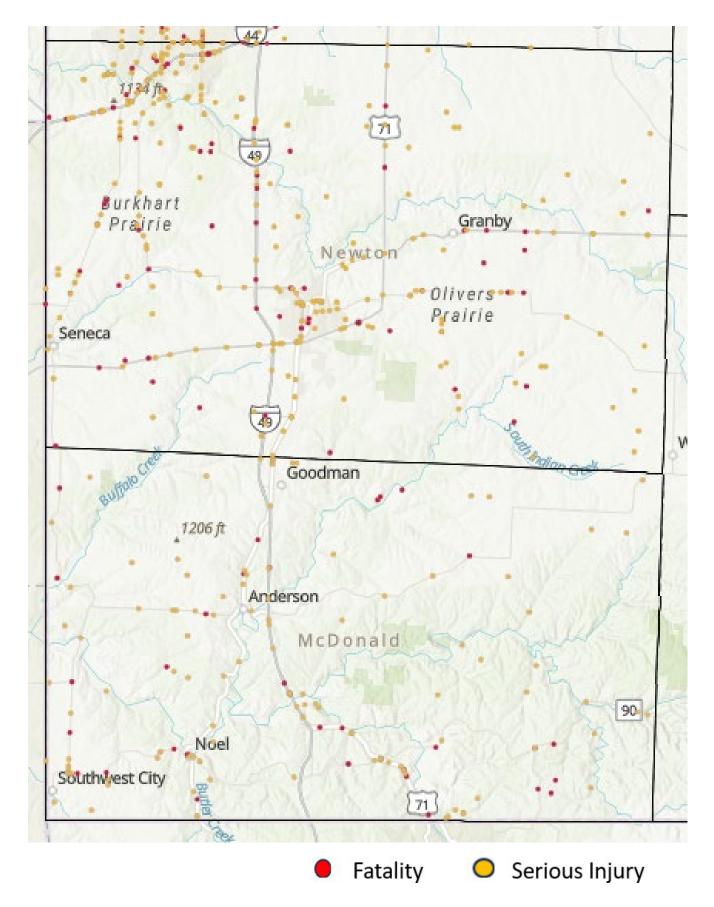
Several factors contribute to the high number of fatalities across these counties:

1. Rural Road Risks: The rural roads common to these counties present significant hazards, including sharp curves, narrow lanes, and a lack of modern safety features like guardrails and rumble strips.

2. High-Risk Behaviors: Speeding, impaired driving, and failure to use seat belts are prevalent in these areas, exacerbating the severity of crashes. Public education campaigns and stronger enforcement of traffic laws could mitigate some of these risks.


3. Infrastructure Challenges: Many of the roads in these counties are older and may not meet current safety standards. Investment in road improvements, including widening lanes, adding safety barriers, and improving signage, could reduce the number of crashes and fatalities.

4. Emergency Response Delays: In rural areas, the time it takes for emergency responders to arrive at the scene of a crash can be significantly longer than in urban areas, increasing the likelihood that a crash will result in fatalities. Improving emergency response capabilities in these regions is essential.


The data from 2019 to 2023 underscores the urgent need for targeted interventions in Jasper, Newton, Barton, and McDonald counties to reduce traffic fatalities and serious injuries. These interventions could include infrastructure improvements, enhanced law enforcement, public safety campaigns, and better emergency response systems.

By addressing the specific risks in these areas, it is possible to make significant progress in reducing the tragic loss of life on Missouri's roads. Reinforcing these strategies with datadriven approaches and community involvement will be crucial in reversing the current trends and making these counties safer for all road users.

Serious Injuries and Fatalities (2019-2023)

Serious Injuries and Fatalities (2019-2023)

A Decade of Rising Transportation Fatalities: A Comprehensive Analysis of State and National Trends

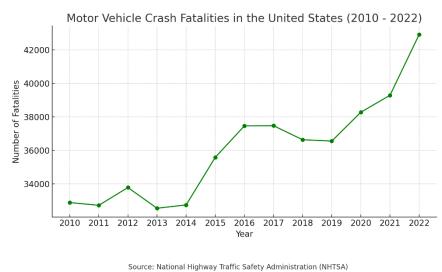
An extensive examination of transportation safety data, both at the state and national levels, was conducted not only for the most recent five-year period covered by our local study but also extending back to 2010. This broader historical perspective was crucial in capturing the true scope and growth of transportation-related fatalities over the past decade. The additional data going back more than ten years provides a deeper understanding of the ongoing rise in fatalities, demonstrating that this troubling trend is neither sudden nor isolated but rather a prolonged and escalating issue across the United States.

The national data reveals a steady and concerning increase in transportation-related fatalities over the last decade. This rise is not confined to one particular mode of transportation; rather, it spans all forms—passenger vehicles, pedestrians, cyclists, motorcycles, and commercial vehicles. Each mode shows a similar upward trajectory, indicating systemic issues affecting transportation safety nationwide. When looking at the overall numbers, it is evident that this is a persistent problem that has been growing for more than ten years, underscoring a broader public safety challenge.

In examining the trends specific to Missouri, it becomes clear that the state is not immune to these national patterns. Missouri's data on transportation fatalities closely mirrors the national data, reflecting similar upward trends over the past decade. Whether considering urban areas with dense traffic or rural regions with long stretches of highway, the data shows consistent increases in fatalities across the state. This alignment with national trends indicates that the factors driving these increases are widespread and systemic rather than localized or unique to certain regions. Missouri's transportation fatalities have grown in parallel with the national trends, reinforcing that this issue is deeply embedded and pervasive.

The data shows that these trends are prevalent at the federal, state, and local levels, impacting communities of all sizes and demographics. The rise in transportation fatalities is evident in diverse contexts—from major highways and interstates to smaller, local streets in both urban and rural settings. Moreover, this increase spans all transportation modes, highlighting that the problem is not limited to any specific type of road user. Motorists, pedestrians, cyclists, and motorcyclists alike are experiencing higher rates of fatalities, pointing to a broad-based trend affecting all aspects of road safety.

The persistence and consistency of these upward trends over such a long period emphasize the widespread nature of the issue. The increase in fatalities has been observed across multiple years and multiple types of transportation networks, underscoring a need for continued vigilance and deeper understanding of the underlying causes. Whether related to changes in traffic patterns, the increased prevalence of distracted driving, or other contributing factors, the data highlights a multifaceted and ongoing problem that continues to impact transportation safety at all levels.

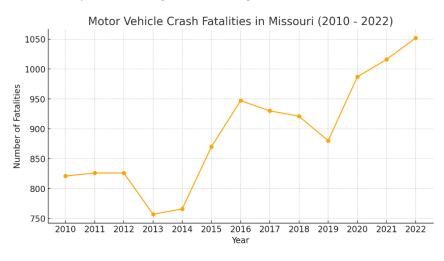

This comprehensive analysis of data from 2010 to the present not only demonstrates the scale of the problem but also reveals the critical and ongoing challenge that transportation safety presents. The parallel upward trends in both national and Missouri-specific data underscore a consistent pattern of growth in fatalities that affects all regions and all modes of transportation. This trend paints a clear picture: transportation-related fatalities have

been rising steadily over the past decade, indicating a deeply rooted issue that spans across the United States. The alignment of state and national data points to broader systemic challenges in transportation safety that have remained unresolved for many years, affecting not only the safety of individual road users but also the wellbeing of communities as a whole.

In conclusion, the extended timeframe of this data analysis provides a stark and comprehensive view of the growth in transportation-related fatalities, revealing a critical and sustained issue. As both state and national data show a consistent rise in fatalities over more than a decade, it becomes evident that these trends are not only continuing but also gaining momentum. The implications of these findings are significant, suggesting an urgent need for an in-depth understanding of the contributing factors behind these increases and the development of effective strategies to address this growing public safety concern.

National Vehicle Fatalities

The chart depicting motor vehicle crash fatalities in the United States from 2010 to 2022, based on data from the National Highway Traffic Safety Administration (NHTSA), reveals critical trends in road safety. Over this period, the number of fatalities shows phases of both stability and alarming increases.



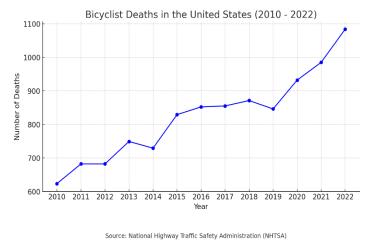
From 2010 to 2014, the number of motor vehicle crash fatalities in the U.S. remained relatively stable, ranging between approximately 32,000 and 34,000 deaths per year. However, between 2015 and 2017, there was a noticeable upward trend, peaking at 37,473 fatalities in 2017. This increase could be linked to factors such as increased vehicle miles traveled, distracted driving, and other high-risk behaviors.

In **2018 and 2019**, fatalities saw a slight decline, stabilizing around 36,000 deaths per year. However, this trend dramatically reversed in **2020** with the onset of the COVID-19 pandemic. Despite fewer cars on the road, fatalities sharply increased due to factors such as increased speeding, impaired driving, and lower seatbelt use. This troubling trend continued into **2022**, with fatalities reaching 42,915—the highest in this period.

Missouri Vehicle Fatalities

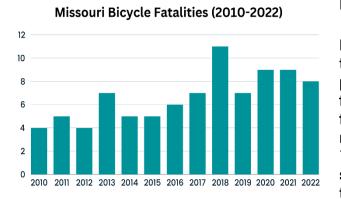
Missouri has mirrored the national trends, with a significant rise in motor vehicle crash fatalities, particularly in recent years. In **2010**, Missouri recorded around 821 traffic

Source: National Highway Traffic Safety Administration (NHTSA)


fatalities. After a period of relative stability and slight fluctuations, the state saw a worrying increase in fatalities. By **2015**, fatalities had risen to 870, and by **2017**, this number had climbed to 930, reflecting national trends of increased risky driving behaviors. The impact of the pandemic years was also felt in Missouri. In **2020**, the state recorded 987 fatalities, and the number continued to rise in **2021**, reaching 1,016 deaths.

Preliminary figures for **2022** suggest a similar upward trend,

highlighting the ongoing challenges in reducing traffic-related fatalities. These Missourispecific statistics align with national patterns, showing a sharp rise in traffic deaths during the pandemic years. Factors such as increased speeding, driving under the influence, and reduced law enforcement have contributed to this spike.


National Bicycle Fatalities

According to a 2022 report on Bicyclist and Pedestrian Deaths by the Insurance Institute for Highway Safety (IIHS) and the Highway Loss Data Institute (HLDI), fatalities among bicyclists and pedestrians in crashes with motor vehicles have reached alarming levels, underscoring the urgent need for enhanced road safety measures. In 2022, 1,084 bicyclists were killed in collisions with motor vehicles—the highest number ever recorded. This marks a disturbing increase in bicyclist fatalities, which have risen by 8% since 1975 and a staggering 75% since their lowest point in 2010.

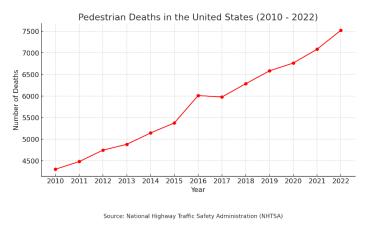
The report highlights that most bicyclist deaths in 2022 (89%) involved individuals aged 20 and older, a group that has seen an almost fivefold increase in fatalities since 1975. This contrasts sharply with fatalities among younger bicyclists (under 20), which have declined by 88% since 1975, suggesting that safety measures targeting children, such as helmet laws, safe routes to school, and education campaigns, have been effective.

However, the rising deaths among adults indicate that current safety measures are insufficient to protect this demographic. Additionally, the data reveals a consistent gender disparity; since 1975, significantly more male bicyclists have been killed in crashes with motor vehicles compared to female bicyclists. Bicyclists consistently account for about 2% of all motor vehicle crash deaths each year, pointing to the ongoing need for targeted safety interventions for this vulnerable road user group.

Missouri Bicycle Fatalities

From 2010 to 2022, Missouri experienced varying trends in bicycle fatalities, reflecting both progress and ongoing challenges in road safety for cyclists. During the early part of this period, from 2010 to 2014, bicycle fatalities in Missouri remained relatively low, fluctuating between 4 and 7 deaths per year. This stability suggested that safety efforts—such as promoting bike safety through education, awareness campaigns, and

infrastructure improvements—were somewhat effective in maintaining lower fatality rates.


However, the situation began to shift slightly in the 2015 to 2017 period, when the number of bicycle fatalities increased, ranging from 7 to 8 deaths per year. This period coincided with a growing emphasis on urban cycling and a rise in cycling activity overall.

The increase in cycling as both a form of recreation and transportation may have contributed to a higher number of incidents involving motor vehicles, highlighting the need for better integration of bicycles into the transportation network.

By 2018 to 2019, Missouri saw a slight decline in bicycle fatalities, with numbers dropping to around 5 to 6 deaths per year. This decrease suggested that enhanced road safety measures and increased awareness campaigns were making a positive impact, although the figures still reflected the inherent risks cyclists face, especially in busy urban environments where interactions with motor vehicles are more frequent.

The most significant changes occurred from 2020 to 2022, when bicycle fatalities in Missouri saw a noticeable rise. This period, heavily influenced by the COVID-19 pandemic, marked a shift in traffic dynamics. With more people turning to cycling for both transportation and recreation, and with changes in traffic patterns and behaviors—including increased speeding on less congested roads—the number of fatalities rose to around 9 to 11 deaths per year by 2022. This uptick reflects a concerning trend that underscores the vulnerability of cyclists amidst evolving roadway conditions.

These fluctuating trends in Missouri's bicycle fatalities illustrate the complexities of improving cycling safety. While the early years showed stability and even some improvement, the recent increase in fatalities points to the need for renewed focus on safety measures. The impact of the COVID-19 pandemic, in particular, has highlighted the importance of adapting safety strategies to changing conditions, whether through better infrastructure, targeted education efforts, or stricter enforcement of traffic laws.

National Pedestrian Fatalities

Pedestrian fatalities also continue to be a major safety concern. The report states that 7,522 pedestrians were killed in motor vehicle crashes in 2022, representing 18% of all crash fatalities. Although the total number of pedestrian deaths in 2022 is similar to that recorded in 1975, there has been an 83% increase since pedestrian fatalities reached their lowest point in 2009. The rates of pedestrian deaths per 100,000 people are

highest among individuals aged 20 and older, highlighting the heightened risks faced by adults walking on roadways.

This increase in pedestrian fatalities is occurring alongside trends such as urbanization, increased distracted driving, and the growing prevalence of larger vehicles like SUVs, which tend to cause more severe injuries to pedestrians due to their size and impact dynamics.

These findings from the IIHS and HLDI report emphasize the critical need for a multi-pronged approach to improving road safety for bicyclists and pedestrians. The data provides a stark reminder that, while progress has been made in certain areas, there is still a pressing need for more comprehensive and targeted interventions to address the growing risks faced by adult cyclists and pedestrians.

Missouri Pedestrian Fatalities

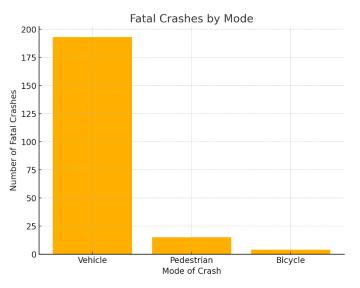
From 2010 to 2022, pedestrian fatalities in Missouri have exhibited a troubling upward trend, underscoring the increasing dangers faced by pedestrians on the state's roads. According

to data from the National Highway Traffic Safety Administration (NHTSA) and the Missouri Department of Transportation (MoDOT), Missouri recorded 55 pedestrian deaths in 2010. This number steadily climbed over the years, reflecting both regional and national trends.

By 2012, pedestrian fatalities had risen to 70, and by 2014, they reached 74. A significant spike occurred in 2015, with the number of pedestrian deaths jumping to 98, marking the start of a period with consistently higher risks for pedestrians. This increase is linked to factors such as distracted

driving, higher vehicle speeds, and greater pedestrian activity, which have contributed to more pedestrian-vehicle collisions.

The following years saw fluctuating yet generally rising numbers. In 2016, pedestrian fatalities decreased slightly to 83, but they climbed again in 2017 to 102. This upward


trajectory continued through 2018 and 2019, with 114 and 107 fatalities, respectively. The most dramatic rise occurred from 2020 to 2022, coinciding with the COVID-19 pandemic. During this period, changes in traffic patterns—such as reduced overall traffic volumes and increased speeding on less congested roads—contributed to a surge in pedestrian deaths. In 2020, Missouri recorded 124 pedestrian fatalities, which rose to 131 in 2021 and slightly increased to 132 in 2022—the highest number recorded in the last decade.

These statistics, sourced from the NHTSA and MoDOT, highlight the urgent need for enhanced pedestrian safety measures across Missouri. The rising trend in fatalities calls for comprehensive strategies, including better infrastructure like safer crosswalks and traffic calming measures, along with public education and stronger enforcement of traffic laws to protect pedestrians and create safer roadways for everyone.

Fatalities by Mode in SW Missouri (2019-2023)

The problem of fatal crashes is multifaceted, involving different modes of transportation, each with unique challenges and risks. Based on data analysis for the past 5-years, the majority of fatal crashes in Jasper, Newton, Barton, and McDonald counties are vehicle-related, including incidents involving cars, trucks, and other motor vehicles.

These crashes often occur under conditions such as poor lighting, adverse weather, highspeed zones, and intersections—factors that exacerbate the severity of collisions. While vehicle-related crashes dominate the data, pedestrian and bicycle fatalities also pose significant safety concerns, especially in areas with inadequate infrastructure for nonmotorized road users.

Vehicle-Related Fatal Crashes

Vehicle-related crashes account for the majority of fatalities in these counties. These crashes can result from a range of factors, including high-speed driving, driver impairment (e.g., alcohol or drug use), distracted driving, and failure to obey traffic signals. The combination of rural and urban settings in these counties adds complexity to traffic safety management and contribute to a greater risk of fatal outcomes. In urban areas, traffic congestion, intersections, and the mixing of different types of road users can lead to increased collision rates.

Furthermore, animal-related crashes, such as those involving deer, farm animals, or other wildlife, have also been contributors to the fatal crash count. These incidents, while

classified under vehicle crashes, present unique challenges, particularly in rural settings where animal crossings are more frequent. Additionally, crashes involving fixed objects, debris, or towed units also fall under this category, often resulting from driver error, mechanical failure, or hazardous road conditions.

Pedestrian and Bicycle Fatal Crashes

While vehicle-related crashes dominate the number of traffic fatalities in Jasper, Newton, McDonald, and Barton counties, pedestrian and bicycle fatalities, though less frequent, represent a critical area of concern that demands focused attention. Pedestrians and cyclists are particularly vulnerable in collisions with motor vehicles due to the lack of physical protection, often resulting in severe injuries or death. Addressing these issues requires a closer examination of the patterns, contributing factors, and potential countermeasures specific to pedestrian and bicycle safety.

Pedestrian fatalities accounted for 15 out of the total fatal crashes recorded in these counties, representing approximately 7.8% of all fatal crashes compared to the 193 vehicle-related fatalities. Although the percentage may seem small, it is significant given the relatively low exposure of pedestrians compared to motor vehicles. The data indicates that pedestrian fatalities are often concentrated in areas lacking adequate crosswalks, sidewalks, or pedestrian signals, which are critical for safe pedestrian movement across and along roadways.

Key locations where pedestrian fatalities frequently occur include urban and suburban areas where pedestrian traffic is higher but infrastructure is inadequate. For example, the absence of clearly marked crosswalks or pedestrian-controlled traffic signals at busy intersections can leave pedestrians exposed to fast-moving vehicles. Additionally, rural areas without proper lighting or designated walking paths present high risks for pedestrians, particularly in areas where vehicle speeds are higher, and visibility is reduced.

Lighting and visibility play a significant role in pedestrian safety. A substantial number of pedestrian fatalities occur during low-light conditions—dawn, dusk, or nighttime—when drivers are less likely to see pedestrians until it is too late. Poor visibility conditions, coupled with the absence of adequate street lighting, amplify the risk for pedestrians. In areas where street lighting is sparse or malfunctioning, the likelihood of a fatal pedestrian crash increases. Pedestrians wearing dark clothing or failing to use reflective materials further compound the problem, making it difficult for drivers to see them.

Bicycle-related fatalities, while lower in number, highlight significant safety issues faced by cyclists sharing the road with motor vehicles. With 4 fatal bicycle crashes recorded, they account for approximately 2.1% of the total fatal crashes. Despite the smaller number, the severity and implications of these crashes are profound. Cyclists, like pedestrians, are highly vulnerable in collisions with vehicles, particularly due to the lack of dedicated infrastructure such as bike lanes, bike paths, or shared road markings (sharrows).

The lack of dedicated bike lanes forces cyclists to share the road with motor vehicles, creating hazardous conditions. In many cases, cyclists are required to navigate narrow road shoulders, which can lead to conflicts with motor vehicles, especially on roads with higher speed limits or heavier traffic. Additionally, many roads in these counties lack clear signage or markings that indicate shared use with cyclists, leading to confusion and unsafe behaviors among drivers who may not expect to encounter cyclists.

Driver behavior also plays a crucial role in bicycle safety. Driver inattention, such as using mobile phones or engaging in other distractions, is a common cause of fatal bicycle crashes. Aggressive driving behaviors, including speeding, tailgating, and failure to yield, are particularly dangerous for cyclists who have less ability to maneuver quickly to avoid a collision. Even a momentary lapse in a driver's attention can result in a fatal crash when a cyclist is present.

Furthermore, the risk to cyclists is exacerbated in rural areas where high-speed roads intersect with cycling routes. Unlike urban areas, rural settings often lack the necessary infrastructure to support safe cycling, such as bike lanes, wide shoulders, or off-road paths. Cyclists in rural areas may face additional risks due to long distances between intersections and fewer safe crossing opportunities. The combination of speed, inattentive driving, and infrastructure deficiencies creates a perfect storm for potentially fatal bicycle crashes.

Comparing the percentages of fatal crashes by mode reveals that pedestrian and bicycle fatalities, while comprising a smaller portion of overall fatal crashes (7.8% and 2.1%, respectively), are disproportionately high considering the exposure levels of pedestrians and cyclists compared to vehicles. Vehicle crashes, including those involving animals or fixed objects, account for 90.1% of all fatal crashes, demonstrating a clear trend that most fatalities occur in motor vehicle-related incidents. However, the inherent vulnerability of pedestrians and cyclists means that even a single fatal crash can significantly impact public perception and safety.

The data strongly suggests that both pedestrian and bicycle crashes often occur in areas where infrastructure is insufficient to support safe, non-motorized travel. The absence of dedicated facilities for pedestrians and cyclists, such as crosswalks, sidewalks, bike lanes, and adequate lighting, creates a hostile environment for these vulnerable road users. Additionally, there is often a lack of public awareness and education on sharing the road safely with pedestrians and cyclists, further contributing to the risk.


The goal is not only to reduce the number of fatal crashes but also to create a safer, more inclusive transportation environment for all road users. By addressing the unique risks faced by pedestrians and cyclists through targeted infrastructure improvements, public education, and enhanced enforcement, Southwest Missouri can foster a community where residents and visitors feel secure in their daily travels, promoting healthier and more sustainable transportation choices.

Contributing Factors

Page | 40

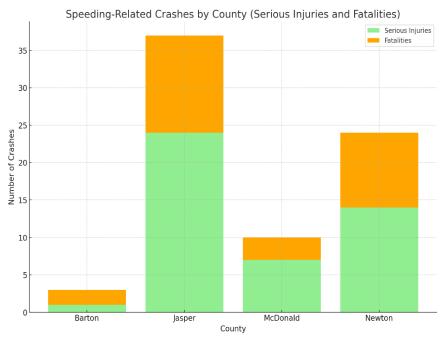
Human Contributing Factors

The cumulative effect of human contributing factors—impaired driving, distracted driving, speeding, and aggressive driving—creates a hazardous environment for all road users and remains a leading cause of road crashes, injuries, and fatalities. From 2019 to 2023, there were a total of **212 fatalities** across the four counties of Barton, Jasper, McDonald, and Newton. Of these, **154 fatalities**—more than 70%—were directly linked to these preventable behaviors.

This means that the majority of traffic-related deaths in these counties can be traced back to human decisions and actions, such as choosing to drive while impaired, engaging in distracted driving, exceeding speed limits, or driving aggressively. Each of these behaviors dramatically increases the risk of severe crashes. For example, impaired driving slows reaction times and impairs judgment, while distracted driving reduces a driver's ability to notice and respond to hazards. Similarly, speeding decreases the time available to react to dangers and increases the force of impact in a crash, while aggressive driving, like tailgating or erratic lane changes, creates dangerous situations that can lead to fatal outcomes.

The fact that **154 out of 212 fatalities** are due to human contributing factors highlights that these deaths are largely preventable. By altering these human behaviors—through stricter law enforcement, public education, awareness campaigns, and technological solutions like driver monitoring systems—many of these fatalities could be avoided. Effective interventions, such as enforcing DUI laws, implementing hands-free policies for mobile devices, reducing speed limits in high-risk areas, and discouraging aggressive driving, could significantly lower the number of traffic fatalities.

This data emphasizes the critical need for a comprehensive approach to road safety that targets these human factors, fostering a safer environment for all road users and saving lives by preventing crashes before they happen.


Speeding

Speed is a critical factor in traffic crashes, directly affecting both the likelihood of a collision and the severity of its consequences. Higher speeds increase the stopping distance required for a vehicle and reduce a driver's ability to detect and react to potential hazards. This relationship between speed and crash risk is particularly dangerous for vulnerable road users, such as pedestrians, who face a much higher risk of fatal injury in collisions with faster-moving vehicles. To fully grasp the impact of speed on crash fatalities, it is crucial to explore the dynamics of speed and its effects on crash severity, reaction time, stopping distances, and the specific vulnerability of pedestrians.

The analysis of speed-related crashes across four counties—Barton, Jasper, McDonald, and Newton—reveals important insights into the frequency, severity, and trends of these incidents. Speeding remains a significant factor contributing to serious injuries and fatalities in these counties, highlighting the need for targeted interventions to improve road safety.

In **Barton County**, there were a total of 3 speed-related crashes. The severity distribution shows 2 crashes resulting in fatalities and 1 resulting in suspected serious injuries. Although the overall number of speed-related crashes in Barton County is low, the severity is a concern, with two-thirds of the incidents resulting in fatalities. This suggests that even a small number of crashes can have a high impact, emphasizing the need for proactive measures to prevent speeding.

Jasper County has the highest number of speed-related crashes, with 37 incidents recorded. The severity distribution includes 24 crashes resulting in suspected serious injuries and 13 crashes resulting in fatalities. This data points to a significant risk of both serious injuries and fatalities. particularly in more densely populated urban areas like Joplin. The high number of incidents reflects persistent risk factors associated with speeding, underscoring the need for continued and enhanced safety measures,

such as increased enforcement and public education campaigns.

In **McDonald County**, there were 10 speed-related crashes, with 7 crashes resulting in suspected serious injuries and 3 resulting in fatalities. The number of crashes indicates a moderate risk level, with a notable proportion resulting in severe outcomes. This suggests a need for interventions in rural or less populated areas to reduce speed-related risks, potentially through infrastructure improvements or targeted awareness campaigns.

Newton County experienced 24 speed-related crashes, with a severity distribution of 14 suspected serious injury crashes and 10 fatal crashes. Newton County also presents a substantial number of speed-related crashes with high severity, indicating a critical need for effective traffic safety interventions. The high proportion of severe crashes points to underlying issues that require addressing, such as road design, speed limits, and enforcement practices.

The analysis of speed-related crashes across Barton, Jasper, McDonald, and Newton counties reveals several key insights. Speeding frequently results in severe injuries or fatalities, posing a consistent threat to road safety in these regions. While some counties like Jasper and Newton show signs of potential improvement in recent years, the overall risk level remains high. Jasper County, the most urbanized of the four, consistently records the highest number of speed-related crashes, indicating the need for urban-specific interventions like traffic calming and stricter enforcement. Meanwhile, Barton, McDonald, and Newton counties show the need for tailored strategies focusing on rural road infrastructure and community education to address speeding risks.

Each county faces unique challenges that require customized solutions to effectively reduce speed-related crashes and improve road safety for all users.

The Dynamics of Speed and Crash Severity

The relationship between speed and crash severity is exponential rather than linear. This means that as speed increases, the risk of severe injury or fatality grows disproportionately. When a vehicle collides with another object, the force of the impact is primarily determined by its speed. The kinetic energy involved in a crash increases with the square of the speed, meaning that doubling a vehicle's speed quadruples the energy released upon impact. For example, a crash at 60 mph will release four times the energy of a crash at 30 mph.

This dramatic increase in energy results in significantly more severe damage to vehicles, and more importantly, a greater likelihood of severe injuries or fatalities to the occupants and other road users involved.

According to data from the World Health Organization (WHO), a 5% increase in average speed leads to a roughly 20% increase in the likelihood of a fatal crash. This statistic underlines the disproportionate impact that even small increases in speed can have on the severity of crashes. Similarly, the National Highway Traffic Safety Administration (NHTSA) in the United States reports that speeding was a contributing factor in 26% of all traffic fatalities in 2021, accounting for over 11,000 deaths. These figures illustrate that managing speed is a critical component of road safety strategies worldwide.

Speed, Reaction Time, and Stopping Distances

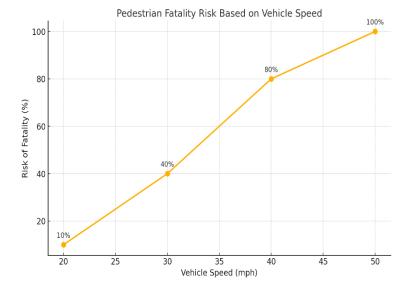
Higher speeds directly affect a driver's ability to react to sudden hazards and the distance required to bring a vehicle to a stop. At 20 mph, the total stopping distance (including reaction time and braking distance) is approximately 40 feet. However, at 40 mph, the stopping distance increases to about 120 feet—three times longer. The time it

takes for a driver to perceive a hazard and react by applying the brakes, known as the perception-reaction time, is generally around 1.5 seconds under optimal conditions. At higher speeds, this reaction distance covers much more ground, reducing the opportunity to avoid a collision.

For instance, a vehicle traveling at 60 mph will cover 88 feet in just one second. If a driver spots a pedestrian at a crosswalk or a vehicle pulling out from a side street, the ability to stop or take evasive action is drastically reduced as speed increases. This not only increases the likelihood of a crash but also magnifies its severity due to the higher energy involved.

Risk to Pedestrians: Speed as a Determinant of Survival

The risk to pedestrians in traffic collisions is acutely sensitive to vehicle speeds. Unlike vehicle occupants who benefit from seat belts, airbags, and the structural integrity of a vehicle, pedestrians have no physical protection in a collision. This makes the speed of the vehicle a crucial determinant of the pedestrian's survival. Various studies and statistics have highlighted the stark impact of speed on pedestrian fatalities:


<u>At 20 mph</u>, the risk of a pedestrian being killed in a collision with a vehicle is about 10%. This relatively lower risk is because drivers have more time to react, and the force of impact is significantly less.

<u>At 30 mph</u>, the fatality risk jumps to approximately 40%. This considerable increase illustrates how a modest rise in speed leads to a disproportionate increase in fatal outcomes.

At 40 mph, the risk of fatality for a

pedestrian escalates to around 80%, and at speeds above 50 mph, the chances of pedestrian survival are minimal. At these speeds, the force of impact is often lethal, as the human body is unable to withstand the trauma.

According to the Insurance Institute for Highway Safety (IIHS), 69% of pedestrian fatalities in 2021 in the United States occurred in urban settings, where speed management is vital for protecting vulnerable road users. This data emphasizes the importance of speed reduction strategies in areas with high pedestrian activity, such as city centers, residential neighborhoods, and school zones.

Urban Environments, Speed Management, and Safety

Urban environments, with their dense mix of vehicles, pedestrians, and cyclists, are particularly vulnerable to the dangers posed by higher speeds. Speed management in these areas is crucial to reducing crash severity and protecting all road users. Various studies have shown that speed limits set at 30 mph or lower, combined with trafficcalming measures, can substantially reduce the number of crashes and their severity.

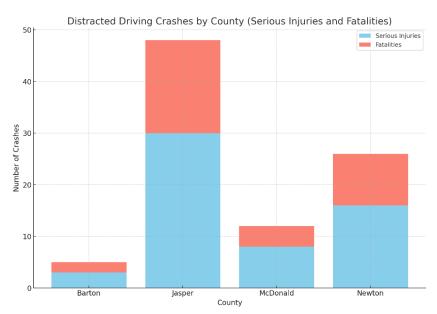
Cities like New York, London, and Oslo have implemented comprehensive speed management policies as part of their Vision Zero initiatives, aiming to eliminate traffic fatalities and serious injuries. Lowering speed limits to 20-25 mph in high-pedestrian areas, alongside implementing traffic-calming measures such as speed bumps, raised crosswalks, pedestrian islands, and narrowing lanes, have been shown to reduce both the number of crashes and their severity. For example, after implementing a city-wide 25 mph speed limit in 2014, New York City saw a 22% reduction in traffic fatalities within four years.

Research shows that lowering speed limits by just 5 mph in urban areas can lead to a significant reduction in crashes. According to a study by the AAA Foundation for Traffic Safety, roads with speed limits of 25 mph or lower had significantly fewer fatal pedestrian crashes compared to roads with speed limits of 35 mph or higher. This data reinforces the value of implementing lower speed limits and other engineering solutions that encourage slower speeds in pedestrian-heavy areas.

Speed is a critical determinant in both the likelihood of a crash occurring and the severity of its outcome. The exponential relationship between speed and crash energy highlights why even small increases in speed can lead to significantly more severe consequences, particularly for vulnerable road users like pedestrians. As statistics and research consistently show, managing speed is not just a matter of reducing the number of crashes but also of mitigating the impact of those that do occur.

In urban settings where pedestrian activity is high, speed management strategies such as lowering speed limits, redesigning streetscapes, and employing traffic-calming measures are vital. These strategies save lives and are essential components of comprehensive road safety plans, such as Vision Zero initiatives. Reducing speed is a proven, effective measure that helps create safer environments for everyone, making roads more forgiving of human error and ultimately saving lives.

Distracted Driving


The analysis of distracted driving crashes across Barton, Jasper, McDonald, and Newton counties highlights both the immediate and far-reaching implications of this dangerous behavior on road safety. Distracted driving remains a significant factor contributing to se rious injuries and fatalities, presenting an ongoing risk to drivers and passengers alike. The issue is not only a local concern but also reflects broader challenges associated with driver behavior, technology use, and road safety management.

Barton County Analysis

In Barton County, there were **5 distracted driving crashes** recorded. The severity of these incidents is notable, with **2 resulting in fatalities** and **3 causing serious injuries**. Although the overall number of distracted driving crashes is lower compared to other counties, the high severity of these outcomes demonstrates the inherent danger of distracted driving in this county. These findings align with broader research indicating that distracted driving, even in less populated areas, can have catastrophic consequences.

Jasper County Analysis

Jasper County experienced **48 distracted driving crashes**, the highest among the four counties analyzed. Of these, **30 resulted in serious injuries**, and **18 were fatal**. The elevated number of incidents in this urbanized county suggests that distracted driving is particularly problematic in areas with higher traffic volumes and potential distractions. Scientific studies have shown that in environments with dense traffic and numerous visual stimuli, the

risks associated with distracted driving increase significantly. The cognitive load required to process such environments is already high, and distractions further impair a driver's ability to react promptly to changing conditions.

McDonald County Analysis

McDonald County reported **12 distracted driving crashes**. The severity distribution reveals that **8 of these crashes resulted in serious injuries**, while **4 were fatal**. The data points to a moderate level of risk, but the high proportion of severe outcomes underscores the dangers associated with distracted driving, even in rural settings. Drivers in these areas may engage in riskier behaviors, such as texting or using mobile devices while driving, underestimating the risks due to perceived lower traffic density. However, research demonstrates that reaction times can be severely impaired by distractions, leading to higher rates of severe outcomes in the event of a crash.

Newton County Analysis

Newton County reported **26 distracted driving crashes**, with **16 crashes resulting in serious injuries** and **10 proving fatal**. The data shows a considerable number of distracted driving incidents with high severity, underscoring the persistent threat posed by distractions behind the wheel. The severity of crashes here highlights the potential for catastrophic outcomes when drivers are inattentive, even on roads that may seem less hazardous than busy urban highways.

Broader Issues and Scientific Insights on Distracted Driving

Distracted driving is a complex issue that has become a widespread problem across the United States, exacerbated by the proliferation of mobile technology and in-vehicle infotainment systems. According to the National Highway Traffic Safety Administration (NHTSA), distracted driving claimed 3,142 lives in 2020 alone, and it remains a leading cause of traffic crashes nationwide. Scientific studies have consistently shown that distracted driving significantly affects a driver's response times, situational awareness, and decisionmaking abilities.

Impact on Response Times: Research by the Virginia Tech Transportation Institute (VTTI) and other safety organizations has demonstrated that texting while driving increases the time a driver spends not looking at the road by up to 400%. This "eyes off the road" time is critical, as studies have found that drivers who text while driving have reaction times that are comparable to those of drunk drivers. A driver sending or reading a text can take their eyes off the road for about 5 seconds. At 55 mph, this is equivalent to driving the length of a football field blindfolded. The delay in response time can lead to a failure to recognize hazards, slower braking responses, and an increased likelihood of veering off the road or colliding with other vehicles or objects.

Cognitive and Visual Distraction: Distracted driving can be categorized into three types: visual (taking eyes off the road), manual (taking hands off the wheel), and cognitive (taking the mind off driving). Each type of distraction can significantly impair driving performance, but the combination of these factors is particularly dangerous. Cognitive distractions, such as engaging in a phone conversation or interacting with a passenger, reduce the driver's situational awareness and ability to process critical visual information. According to a study by the American Automobile Association (AAA) Foundation for Traffic Safety, cognitive distractions by the distractions can slow down reaction times, reduce brain activity associated with driving by up to 37%, and increase the likelihood of missed signals or road signs.

The Role of Technology and Multitasking: Modern vehicles equipped with advanced infotainment systems and smartphones have contributed to an increase in multitasking behaviors among drivers. However, scientific evidence shows that the human brain is not capable of effectively multitasking while driving. A study published in the journal Human Factors found that even simple tasks, like tuning the radio or adjusting climate controls, can lead to dangerous levels of distraction. This cognitive overload can have fatal consequences when drivers are required to make split-second decisions.

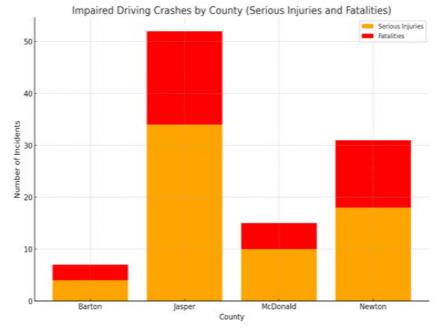
Effects in Urban vs. Rural Settings: While urban areas like Jasper County face unique challenges with traffic volume and diverse distractions, rural counties like McDonald and Newton are not immune to these risks. In rural settings, where traffic enforcement may be less stringent and roads less congested, drivers might underestimate the dangers, leading to higher-risk behaviors. Research from the Insurance Institute for Highway Safety (IIHS) indicates that crashes in rural areas, while less frequent, tend to be more severe due to higher speeds and delayed emergency response times.

Human Factors and Behavioral Psychology: Distracted driving is not just a technological problem but also a deeply rooted behavioral issue. The "It won't happen to me" mentality often prevails, leading to a culture where distracted driving is normalized despite widespread awareness of its dangers.

Behavioral studies suggest that drivers often underestimate the risks associated with distracted driving and overestimate their ability to multitask safely. This misperception can lead to risky behaviors, such as texting while driving, that significantly increase the likelihood of crashes.

With significant numbers of serious injuries and fatalities resulting from these crashes, it is evident that distracted driving is a complex, multifaceted problem that affects both urban and rural communities. The scientific evidence further supports the need for a comprehensive approach to address distracted driving, combining enforcement, education, technology, and behavioral change strategies. Distracted driving remains a critical road safety challenge that requires continued vigilance, innovation, and a commitment to changing social norms to ensure safer roads for all.

Impaired Driving


The analysis of impaired driving crashes across Barton, Jasper, McDonald, and Newton counties provides valuable insights into the frequency, severity, and broader implications of impaired driving on road safety. Impaired driving is a major factor contributing to serious injuries and fatalities, posing significant risks to drivers, passengers, and communities alike. This issue is not only a local concern but also reflects broader challenges involving driver behavior, substance use, and road safety enforcement.

Barton County:

Barton County recorded a total of **7 impaired driving crashes**. Of these, **3 resulted in fatalities**, and **4 caused serious injuries**. Although the overall number of impaired driving crashes in Barton County is relatively low, the high severity of these incidents underscores the substantial danger posed by impaired driving. These findings are consistent with broader research indicating that impaired driving, even in less populated areas, can lead to devastating outcomes due to delayed reaction times and poor decision-making abilities when under the influence of alcohol or drugs.

Jasper County:

Jasper County reported 52 impaired driving crashes, the highest among the four counties analyzed. Of these, 34 resulted in serious injuries, and 18 were fatal. The high number of incidents in this more urbanized county suggests that impaired driving is a prevalent issue in areas with greater traffic volumes and access to substances like alcohol. Studies have shown that urban environments with higher density nightlife, more bars, and increased access to alcohol tend to have a higher incidence of impaired driving. The

impairments caused by alcohol and drugs—such as reduced coordination, delayed reaction times, and impaired judgment—are exacerbated in busy traffic environments, increasing the likelihood of severe crashes.

McDonald County:

McDonald County had **15 impaired driving crashes**. The severity of these crashes is significant, with **5 resulting in fatalities** and **10 causing serious injuries**. Although the overall numbers are moderate, the high proportion of severe outcomes demonstrates the ongoing risks associated with impaired driving in rural settings. In less populated areas, where traffic enforcement may be less stringent and fewer transportation alternatives are available, drivers may engage in riskier behaviors, such as driving after drinking. Scientific evidence shows that even a small amount of alcohol can significantly impair motor skills and reaction times, making driving dangerous.

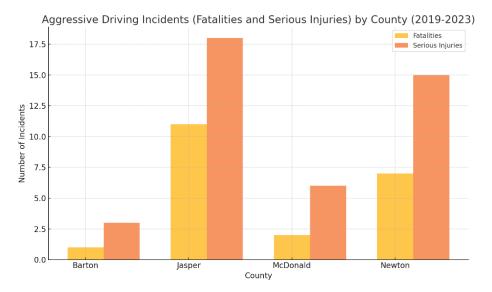
Newton County:

Newton County experienced **31 impaired driving crashes**, with **13 crashes resulting in fatalities** and **18 resulting in serious injuries**. The data indicates a substantial number of impaired driving incidents with high severity, underscoring the persistent threat posed by alcohol and drug-impaired drivers. In counties like Newton, where roads may be perceived as safer due to less traffic, impaired driving still poses a significant danger. Research by the Insurance Institute for Highway Safety (IIHS) shows that impaired driving in rural areas often leads to more severe outcomes because of higher speeds, longer emergency response times, and lower rates of seatbelt usage.

Broader Issues and Scientific Insights on Impaired Driving:

Impaired driving is a complex issue that remains a critical problem across the United States, exacerbated by the easy accessibility of alcohol, drugs, and medications that impair driving abilities. According to the National Highway Traffic Safety Administration (NHTSA), impaired driving is a leading cause of traffic fatalities, responsible for nearly 30 deaths daily in the United States—one death every 50 minutes. This alarming statistic underscores the severity of the issue and the need for effective interventions.

Impact on Reaction Times and Judgment: Alcohol and drugs, including prescription medications, impair the central nervous system, leading to slower reaction times, poor coordination, and impaired judgment. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) states that even at a blood alcohol concentration (BAC) of 0.08%, which is the legal limit in most states, a driver's ability to concentrate, visually track, and process information is significantly compromised. Drivers with a BAC of 0.08% are four times more likely to be involved in a crash compared to sober drivers. Impaired drivers are also less likely to recognize their diminished abilities, leading to risky decision-making and a false sense of control over their driving.


Physical and Cognitive Impairments: Impaired driving is not limited to alcohol; it also includes illicit drugs, prescription medications, and combinations of substances, all of which impair cognitive and motor functions. Alcohol affects brain regions responsible for thinking, reasoning, and muscle coordination—critical abilities for safe driving. A study by the Centers for Disease Control and Prevention (CDC) notes that marijuana use, which is increasing, can impair motor coordination, attention, and reaction times. The combination of alcohol and marijuana is particularly dangerous, as it results in greater impairment than either substance alone, significantly increasing crash risk.

The data from Barton, Jasper, McDonald, and Newton counties highlights the urgent need to address impaired driving comprehensively. With significant numbers of serious injuries and fatalities resulting from these crashes, it is evident that impaired driving is a complex, multifaceted problem affecting both urban and rural communities. Scientific evidence supports the need for a wide-ranging approach to combat impaired driving, combining enforcement, education, technology, and behavioral change strategies. Impaired driving remains a critical road safety challenge requiring ongoing vigilance, innovative solutions, and a concerted effort to change societal norms to ensure safer roads for all.

Aggressive Driving

Aggressive driving is a pervasive issue that significantly contributes to serious injuries and fatalities on roads, creating ongoing risks for drivers, passengers, pedestrians, and entire communities. The problem of aggressive driving extends beyond local traffic concerns and reflects broader, systemic challenges related to driver behavior, urban planning, traffic management, road safety enforcement, and cultural norms. It is a complex, multifaceted

issue that demands a comprehensive approach to address effectively. **Barton County**, for example, recorded only **1 aggressive driving crash fatality** from 2019 to 2023, with an

additional **3 crashes leading to serious injuries**. While the total number of aggressive driving incidents in Barton County is comparatively low, the severity of the outcomes underscores the significant dangers associated with aggressive driving. Even in less densely populated areas, where one might assume the risks are lower due to reduced traffic, aggressive driving can still lead to devastating consequences.

Research has shown that aggressive driving behaviors—such as speeding, tailgating, and erratic lane changes—create hazardous conditions that can result in severe accidents. These findings suggest that the risks of aggressive driving are not confined to any particular type of environment but are universally dangerous regardless of the location.

In contrast, **Jasper County** reported **11 aggressive driving crash fatalities** during the same period—the highest among the four counties studied. Additionally, **18 crashes in Jasper County resulted in serious injuries**. This high number of incidents highlights that aggressive driving is a prevalent issue in more urbanized areas, where traffic volumes are higher, and the driving environment is more complex. Studies have demonstrated that urban environments with high traffic density can intensify aggressive driving behaviors, such as road rage, speeding, and weaving through traffic, which increases the likelihood of severe crashes. The challenging nature of busy urban roads, coupled with the stress of congestion and time pressures, can exacerbate the risks posed by aggressive driving behaviors, leading to more accidents and more severe outcomes. The impairments caused by aggressive driving behaviors, leading to more accidents and more severe outcomes in the stress of congestion and time pressures, can exacerbate the risks posed by aggressive driving behaviors, leading to more accidents and more severe outcomes. The impairments caused by aggressive driving behaviors, leading to more accidents and more severe outcomes in densely populated areas with high volumes of vehicles, pedestrians, and cyclists.

McDonald County experienced **2 aggressive driving crash fatalities** from 2019 to 2023, along with **6 crashes that resulted in serious injuries**. Although the total number of aggressive driving incidents is moderate compared to more urbanized counties, the proportion of severe outcomes remains alarmingly high. This situation illustrates that aggressive driving in rural settings also carries significant risks. In areas with lower traffic density, where drivers may not feel the immediate presence of law enforcement, there can be a false sense of security that leads to riskier driving behaviors, such as excessive speeding or reckless overtaking. Evidence shows that aggressive driving, characterized by behaviors like speeding, running red lights, or failing to yield, can dramatically increase the likelihood of a crash. In rural areas, these crashes often result in more severe outcomes due to factors like higher average speeds, limited visibility, and longer emergency response times.

Similarly, **Newton County** recorded **7 fatalities from aggressive driving crashes** over the same period, with an additional **15 crashes leading to serious injuries**. The data reveals a substantial number of aggressive driving incidents with severe consequences, underlining the persistent threat posed by reckless driving behaviors. Even in counties like Newton, where roads may be perceived as safer due to lower traffic volumes, aggressive driving remains a significant danger. Research suggests that rural areas often see more severe crash outcomes because of higher speeds, longer emergency response times, and reduced access to emergency care. This combination of factors can transform what might have been a minor crash in a more controlled environment into a fatal or near-fatal event.

Broader Issues and Scientific Insights on Aggressive Driving

Aggressive driving is not only a localized issue but a widespread problem across the United States, significantly affecting road safety. It is often exacerbated by factors such as high traffic volumes, road congestion, stress, inadequate road infrastructure, and poor driving etiquette. According to the National Highway Traffic Safety Administration (NHTSA), aggressive driving is a leading contributor to traffic fatalities, responsible for a substantial proportion of fatal crashes each year. This alarming trend underscores the critical need for effective interventions that can address the root causes of aggressive driving and mitigate its impact on road safety.

Impact on Reaction Times and Judgment: Aggressive driving encompasses a range of behaviors—such as speeding, tailgating, weaving in and out of traffic, and running red lights—that collectively reduce the margin of error for drivers. These actions significantly reduce the time drivers have to react to unexpected situations, increasing the likelihood of crashes and fatalities. Drivers who engage in aggressive driving often underestimate their risk and overestimate their ability to control dangerous driving conditions, creating a perfect storm for accidents. Studies consistently show that aggressive driving significantly increases the risk of a crash, not only due to the direct actions taken by the aggressive driver but also by influencing the behaviors of other drivers on the road, who may react unpredictably to such behaviors.

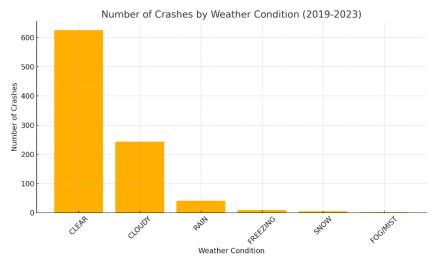
Physical and Cognitive Impairments: The physical and cognitive effects of aggressive driving should not be underestimated. Behaviors like speeding, rapid lane changes, and ignoring traffic signals compromise a driver's ability to make quick, rational decisions and reduce overall control of the vehicle. Research has demonstrated that aggressive drivers are less likely to wear seatbelts and more prone to being involved in multiple-vehicle crashes, as their actions often create chaotic and unsafe driving environments. The cognitive overload from aggressive driving can impair judgment, delay reaction times, and lead to a cascading series of errors that culminate in serious accidents.

Environmental and Social Dynamics: Aggressive driving is often more prevalent in certain environmental and social contexts, such as during peak traffic hours, in congested urban areas, and on busy highways. In environments with high traffic volumes and limited road space, such as parts of Jasper County, drivers may experience increased stress and frustration, which can lead to aggressive driving behaviors. Research indicates that congestion and traffic delays can provoke anger and anxiety among drivers, prompting them to engage in risky behaviors as a way to cope with the frustration. Moreover, urban environments with more complex road networks and higher numbers of intersections can

provide more opportunities for aggressive driving behaviors, such as running red lights or making illegal turns.

Rural vs. Urban Challenges: While urban areas like Jasper County face unique challenges related to aggressive driving due to high traffic volumes, congestion, and a greater likelihood of road rage incidents, rural counties like McDonald and Newton are not immune to these risks. In rural settings, where roads may be less congested, and law enforcement presence less visible, drivers might mistakenly believe that it is safer to drive aggressively. However, data shows that rural crashes often result in more severe outcomes because of higher average speeds, delayed emergency response times, and lower rates of seatbelt usage. The perceived freedom of driving on less crowded rural roads can lead to overconfidence and a greater propensity for aggressive driving behaviors, which, when combined with high speeds and limited safety measures, can result in fatal crashes.

Behavioral and Cultural Factors: Aggressive driving is deeply rooted in behavioral and cultural factors, which can make it challenging to address through simple regulatory measures alone. Despite widespread awareness of the dangers, many drivers continue to exhibit aggressive behaviors due to social norms, peer influence, and stress-induced responses to traffic conditions. Behavioral studies suggest that drivers' perceptions of risk and their tolerance for aggressive driving are influenced by cultural norms, personal experiences, and the perceived behavior of others on the road. For example, if a driver frequently encounters aggressive driving by others, they may be more likely to adopt similar behaviors. The misperception that aggressive driving is a quick solution to traffic delays or a way to assert dominance on the road can lead to risky behaviors and a higher likelihood of crashes.


Environmental factors

Environmental factors such as lighting, time of day, weather, and season can significantly influence roadway crashes and fatalities. These elements can affect visibility, road conditions, and driver behavior, contributing to the likelihood and severity of crashes.

Environmental factors play a crucial role in roadway safety. Addressing these factors through better infrastructure, such as improved street lighting, traffic management during peak hours, and road design considerations for adverse weather, is essential to reduce crashes and fatalities. Understanding how these conditions impact driver behavior and roadway safety can help in developing targeted strategies and policies to create safer road environments.

Impact of Weather Conditions

This summary examines the influence of different weather conditions on severe and fatal crashes from 2019 to 2023 in the counties of Jasper, Newton, Barton, and McDonald. The dataset includes detailed information about each crash, such as severity, road conditions, crash type, and weather conditions. Understanding how weather impacts road safety can help in designing targeted interventions and improving overall traffic management strategies.

Key Findings:

Clear Weather Dominates Crash Statistics:

A significant majority of the crashes—625 incidents—occurred during clear weather conditions. This finding might seem counterintuitive, as one might expect adverse weather to be more dangerous. However, it suggests that factors other than weather, such as driver behavior (e.g., speeding, distracted driving) or

traffic volume, play a more substantial role in these crashes. Clear weather may also contribute to a false sense of security, leading to riskier driving practices.

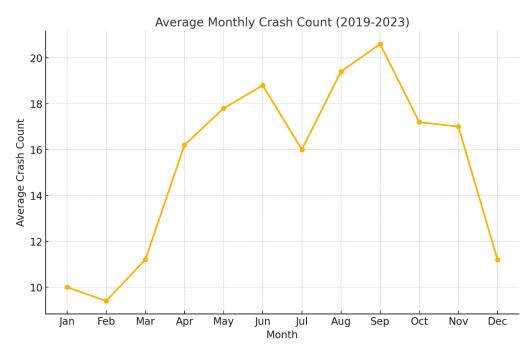
Cloudy Weather and Crash Risks:

Cloudy weather accounts for 243 crashes, making it the second most common weather condition associated with crashes. Reduced visibility and potentially slick road surfaces might contribute to these incidents. The relatively high number of crashes under cloudy conditions suggests that even minor reductions in visibility or road traction can significantly impact driver safety.

Rain and Its Moderate Impact:

Rain was a contributing factor in 40 recorded crashes over the five-year period. Rain can lead to reduced visibility and slippery road surfaces, which can increase stopping distances and reduce vehicle control. The moderate number of crashes under rainy conditions suggests that while it does increase risk, many drivers may exercise greater caution when driving in the rain.

Severe Weather Conditions (Freezing and Snow):


Extreme weather conditions, such as freezing temperatures and snow, contributed to a smaller number of crashes—9 and 4 incidents, respectively. These low numbers may be due to several factors: fewer vehicles on the road during severe weather, better preparedness, or the possibility that drivers are more cautious when such conditions are present. However, crashes in these conditions often result in more severe outcomes due to the challenges of vehicle control on ice or snow.

Weather conditions have a clear impact on the occurrence of crashes, but the highest number of crashes occurs in clear weather, indicating that driver behavior remains a crucial factor. Understanding the dynamics of crashes under different weather conditions allows stakeholders to tailor interventions more effectively, ensuring safer roads in Jasper, Newton, Barton, and McDonald counties. This data-driven approach is vital for reducing both the frequency and severity of road incidents.

Crash Data Analysis by Month

The data analyzed comprises traffic crash records categorized as severe or fatal from 2019 to 2023, covering four counties: Jasper, Newton, Barton, and McDonald. The monthly average crash data across these five years reveal notable patterns that help us understand the frequency and potential seasonality of crashes in the region.

The average number of crashes per month across all five years shows variation, with certain months experiencing consistently higher crash rates. January sees an average of 10 crashes, while February is slightly lower at 9.4. The number increases to an average of 11.2 in March. April and May show more significant activity, with averages of 16.2 and 17.8 crashes respectively. This indicates a trend where traffic incidents start increasing in early spring and peak as summer approaches.

The data indicates a discernible seasonal trend where crash rates tend to rise in the spring months, particularly in April and May. This period represents the peak months for traffic incidents, suggesting potential factors related to increased travel. weather conditions, or other seasonal influences. Winter months like January and February have relatively lower crash rates compared to spring and summer months, which

aligns with typical traffic patterns where severe weather may reduce road usage, although it can increase the severity of incidents when they do occur.

Certain months, such as February and March, exhibit more stability in crash numbers, with averages close to each other (9.4 in February and 11.2 in March). This could point to a more predictable pattern of road usage or consistent road safety measures that are effective during these times.

Comparing the monthly crash averages provides insights into potential shifts in traffic patterns over the years. While some months consistently remain high in crashes, others might show fluctuation depending on specific annual factors like weather, construction, or other temporary disruptions.

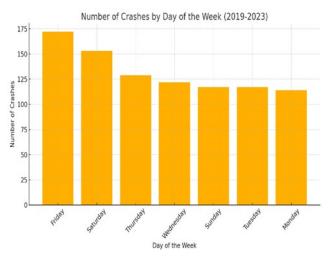
From the five-year analysis, it is evident that the traffic safety dynamics in Jasper, Newton, Barton, and McDonald counties follow a somewhat predictable pattern, with increases in crash rates during specific periods of the year. This overview aids in understanding the distribution and frequency of severe and fatal traffic crashes, which can be further studied for detailed safety planning.

Year-by-Year Observations:

2019: The year started with a moderate number of crashes, averaging aro und 10 per month. A notable increase was seen in May and again towards the end of the year.

2020: Crashes remained relatively consistent throughout the year, with a slight decrease in January and February, likely influenced by weather or reduced traffic flow.

2021: A significant increase was observed in May, peaking at 26 crashes, which may warrant further investigation into specific incidents or factors influencing this spike.


2022: Crashes fluctuated more, with April showing a marked increase. This could be due to several factors, including changes in traffic volume or road conditions.

2023: The crash count shows a general increase compared to previous years, with January and March both showing higher numbers (14 and 13 crashes, respectively).

Crash Data Analysis by Day

This analysis examines the distribution of severe and fatal crashes across different days of the week from 2019 to 2023, focusing on data from four counties: Jasper, Newton, Barton, and McDonald. The dataset includes various details about each crash, such as crash type, severity, road conditions, weather conditions, and location specifics. The goal of this summary is to provide insights into the patterns of crash occurrences based on the day of the week, which can inform traffic safety strategies and targeted interventions.

Key Findings:

High Incidence on Fridays and Saturdays:

The analysis reveals that Fridays have the highest number of crashes, with a total of 172 incidents recorded over the five-year period. Saturdays follow closely with 153 crashes. The high numbers on these days may be attributed to increased road traffic typically seen on weekends due to social activities, commuting patterns, and longer travel distances. The data suggests that more attention should be focused on these days when planning traffic safety interventions.

Mid-Week Crashes:

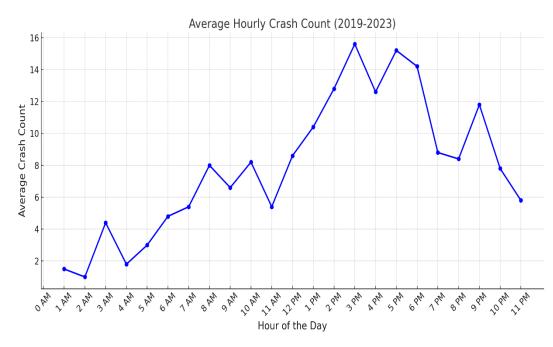
Thursday and Wednesday also show relatively high crash numbers, with 129 and 122 crashes, respectively. The mid-week spike might indicate patterns linked to routine work commutes, deliveries, or other activities that peak during these days. Understanding the underlying causes could help in designing more effective traffic management and safety campaigns for these days.

Weekend Crashes:

Sunday's total of 117 crashes underscores the continued risk of severe and fatal incidents over the weekend. While it does not have as many crashes as Friday or Saturday, it still represents a significant number. This may be linked to recreational travel, longer trips, or even fatigue-related crashes as individuals return from weekend activities.

Lower Incidences on Mondays and Tuesdays:

Although not highlighted in this summary, it is worth noting that crashes on Mondays and Tuesdays are generally lower compared to the rest of the week. This might be due to reduced traffic volume or less risky driving behaviors at the start of the work week. However, understanding why these days are safer could provide clues to mitigating crashes on higher-risk days.


In conclusion, the analysis of crash data by the day of the week shows clear patterns that suggest specific days, particularly Fridays and Saturdays, require more focused attention in terms of traffic safety management. By understanding these patterns and the factors contributing to them, stakeholders can develop more effective, evidence-based interventions to improve road safety outcomes in Jasper, Newton, Barton, and McDonald counties.

Crash Data Analysis by Time of Day

An analysis of traffic crashes by time of day from 2019 to 2023 provides valuable insights into patterns related to the timing of severe and fatal incidents across Jasper, Newton, Barton, and McDonald counties. Understanding these trends is crucial for addressing potential highrisk periods and implementing targeted traffic safety measures.

The average hourly crash data reveals distinct variations throughout the day. Crashes are generally lower in the early morning hours and tend to increase as the day progresses. The period between midnight (00:00) and 5:00 AM shows the lowest average crash rates, with the number gradually increasing as traffic volume begins to rise during the early morning hours. By 6:00 AM, the average crash count begins to climb, reflecting the start of the morning commute period.

A significant spike in crashes is observed between 7:00 AM and 9:00 AM, corresponding to peak commuting times when traffic density on the roads is typically high. The crash count remains relatively stable through the mid-morning hours but begins to increase again around midday (12:00 PM to 1:00 PM). This midday rise may correlate with lunchtime traffic and higher vehicle usage during this period.

The highest average crash rates occur during the late afternoon and early evening hours, particularly between 4:00 PM and 7:00 PM. This period aligns with the evening rush hour when a large number of vehicles are on the road, and factors such as fatigue, impatience, or distractions may contribute to higher crash frequencies. After 8:00 PM, crash

rates start to decline gradually but remain significant until midnight, possibly due to factors like reduced visibility and impaired driving during night hours.

The overall trend highlights two peak periods for crashes: the morning rush hour (7:00 AM to 9:00 AM) and the evening rush hour (4:00 PM to 7:00 PM). These patterns suggest that traffic management strategies and safety interventions might be most needed during these times to mitigate the risk of severe and fatal crashes.

The findings from this five-year analysis underscore the importance of understanding the timing of traffic crashes to inform policy decisions, improve road safety measures, and enhance public awareness campaigns. Focusing on high-risk hours could lead to more effective safety improvements and a reduction in crash rates in the region.

Lighting Conditions

The majority of crashes, including both fatal and those resulting in suspected serious injuries, occurred under daylight conditions. A total of 134 fatal crashes and 473 crashes with suspected serious injuries were recorded during daylight. This high number is likely due to increased traffic volumes during daylight hours, which, despite better visibility, leads to more exposure and a higher likelihood of crashes.

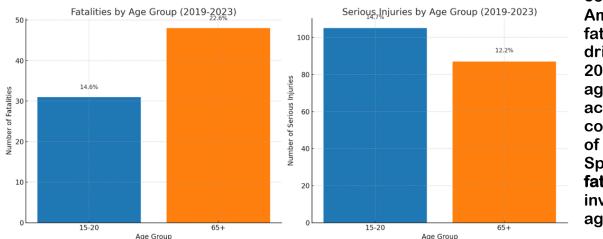
Crashes under dark conditions, particularly where street lights are off, also present a significant safety concern. There were 63 fatal crashes and 176 suspected serious injury crashes in scenarios where street lights were not operational. The reduced visibility in such conditions contributes to an elevated risk for all road users.

Further examining dark conditions, "Dark with Street Lights Off" resulted in a considerable number of crashes, with 63 fatal and 176 serious injury crashes, indicating the dangers of inadequate lighting. "Dark with Street Lights On" recorded 14 fatal crashes and 59

suspected serious injury crashes, showing that even when lights are on, visibility can still be a concern. "Dark Unknown" conditions, though accounting for fewer crashes (1 fatal and 4 serious injuries), point to gaps in data that need to be addressed for future analyses.

A closer look at the county-level data reveals distinctive patterns in how lighting conditions impact crash severity.

In Barton County, most crashes occurred under daylight, with 10 fatal crashes and 29 serious injury crashes. However, dark conditions with street lights off also contributed significantly, with 7 fatal and 10 serious injury crashes.


Jasper County had the highest number of crashes under daylight conditions, reporting 58 fatal and 187 serious injury crashes. Dark conditions without street lighting led to 25 fatal and 69 serious injury crashes, highlighting the risks associated with insufficient lighting.

McDonald County recorded a high number of crashes under dark conditions with street lights off, with 16 fatal and 64 serious injury crashes. Despite daylight conditions resulting in 26 fatal and 63 serious injury crashes, the data underscores the significant risk posed by dark roadways.

Newton County also showed a high incidence of crashes during daylight, with 40 fatal and 136 serious injury crashes. In dark conditions with street lights off, there were 15 fatal and 33 serious injury crashes, indicating the need for measures to improve nighttime visibility.

The data clearly demonstrates that while daylight conditions account for the most crashes due to higher traffic volumes, dark conditions, particularly without adequate street lighting, substantially increase the risk of severe accidents. This pattern is consistent across all counties, with specific areas like Jasper and McDonald being more affected by dark conditions. Improving visibility and enhancing data accuracy on lighting conditions will be essential in developing effective strategies to reduce crash severity across the region.

A Focus on Young and Older Drivers

From 2019 to 2023, a total of 212 fatalities occurred on the roadways across the analyzed

counties. Among these fatalities, drivers aged 15-20 and those aged 65 or older accounted for a combined total of **79 fatalities**. Specifically, **31 fatalities** involved drivers aged 15-20, while **48 fatalities** involved drivers aged 65 or older. Although these two age groups are often considered vulnerable on the road due to inexperience or age-related challenges, they represent only **37%** of the total fatalities during this period. This indicates that while young and older drivers face significant risks, the remaining **133 fatalities** (63% of the total) involve other age groups, suggesting that road safety challenges span across all demographics.

In addition to the fatalities, there were a total of **712 serious injury crashes** from 2019 to 2023 across all age groups. Young drivers aged 15-20 were involved in **105 serious injury crashes**, accounting for approximately **15%** of all serious injury crashes. Older drivers aged 65 or older were involved in **87 serious injury crashes**, representing about **12%** of the total. Combined, these two age groups were involved in **27%** of all serious injury crashes, highlighting the significant risks faced by these demographics on the road. The remaining **73%** of serious injury crashes involved other age groups, underscoring that while young and older drivers are vulnerable, the broader road safety issues affect drivers of all ages.

These figures emphasize the need for a comprehensive approach to road safety that not only addresses the fatalities but also the high number of serious injuries, which can have long-lasting impacts on individuals and communities.

To improve road safety for all, it is essential to understand the unique challenges faced by young and older drivers. The data highlights significant differences in crash severity, distribution, and potential risk factors for these two demographics, underscoring the need for targeted strategies to address their specific vulnerabilities.

Crash Risks and Challenges for Young Drivers (Aged 15-20)

Young drivers aged 15-20 are often overrepresented in crash statistics due to several factors, including inexperience, risk-taking behaviors, and overconfidence. The data for this age group reveals a troubling pattern of severe crashes, particularly in counties such as Jasper and Newton.

In **Barton County**, there were **11 crashes** involving young drivers, with **2 fatal crashes** and **9 suspected serious injury crashes**. Although the total number of crashes is relatively low compared to other counties, the severity is disproportionately high. This suggests that while crashes may be less frequent, they tend to be serious when they do occur. This could be due to factors such as rural road conditions, higher speeds, or limited road safety infrastructure, which are common in areas with lower traffic volumes but potentially more dangerous driving environments.

Jasper County presents a more alarming scenario. With 74 crashes involving 15-20 yearolds, including 12 fatal crashes and 62 suspected serious injury crashes, Jasper emerges as a critical hotspot for young driver-related crashes. The high number of fatal crashes is particularly concerning and may indicate a combination of factors at play, such as highspeed roadways, intersections with poor visibility, or areas prone to risky driving behaviors like speeding or distracted driving. For young drivers, who are still developing their driving skills and judgment, these factors can lead to catastrophic outcomes.

In **McDonald County**, the data shows **10 crashes** involving young drivers, with an equal split between **5 fatal crashes** and **5 suspected serious injury crashes**. The balanced distribution between fatal and serious injury crashes indicates that young drivers in this county face a

high risk of severe outcomes in the event of a crash. Contributing factors could include a mix of rural and semi-urban roads that lack adequate safety features, such as proper lighting or signage, which are crucial for less experienced drivers.

Newton County recorded **36 crashes** involving young drivers, with **7 fatal crashes** and **29 suspected serious injury crashes**. This high number of serious injury crashes suggests that even when young drivers survive crashes, they are often left with significant injuries, highlighting the need for improved safety measures. The crash severity could be linked to road conditions, the presence of high-speed zones, or the use of older vehicles with less advanced safety features, which are often more common among younger drivers.

Overall, the crash data for young drivers underscores the challenges they face on the roadways. Inexperience, combined with risk-taking behaviors such as speeding, distracted driving, and impaired driving, can lead to severe crashes. The data suggests a need for targeted interventions, such as graduated driver licensing (GDL) programs, help limit high-risk driving situations for new drivers, and road safety campaigns focusing on risk awareness and defensive driving techniques.

Crash Risks and Challenges for Older Drivers (Aged 65 and Older)

Drivers aged 65 and older represent another group that faces unique challenges on the road. As people age, they often experience declines in vision, reaction times, and cognitive abilities, which can affect their driving performance. This demographic is also more vulnerable to injury in crashes due to frailty. The data for drivers aged 65 or older shows a distinct pattern of crash severity across several counties, often with serious consequences.

In **Barton County**, there were **4 crashes** involving drivers aged 65 or older, all resulting in **suspected serious injuries**. While the total number of crashes is low, the severity of outcomes is high, reflecting the vulnerability of older drivers. These crashes might occur in low-traffic areas where older drivers, possibly due to slower reflexes or decreased situational awareness, might misjudge turns or fail to react promptly to changing road conditions.

Jasper County again shows a significant concern for road safety with older drivers. The county recorded 61 crashes involving this age group, with 7 fatal crashes and 54 suspected serious injury crashes. The high number of serious injury crashes highlights the particular vulnerability of older drivers to sustaining severe injuries even in less severe crash types. Factors contributing to this pattern could include complex intersections, areas with heavy traffic, or inadequate signage that might confuse or overwhelm older drivers.

McDonald County reported **22 crashes** involving drivers aged 65 or older, with an equal number of **11 fatal crashes** and **11 suspected serious injury crashes**. The parity between fatal and serious injury crashes indicates a severely hazardous environment for older drivers. Given their decreased physical resilience, older adults are more likely to suffer fatal injuries even in crashes that might be survivable for younger drivers. This data underscores the need for roadway improvements, such as clearer signage, better lighting, and infrastructure designed to accommodate slower reaction times.

In **Newton County**, there were **25 crashes** involving older drivers, including **7 fatal crashes** and **18 suspected serious injury crashes**. This pattern indicates a combination of high crash

severity and frequency. Older drivers may struggle with complex traffic patterns or unexpected roadway changes, increasing the likelihood of severe outcomes in crashes.

Overall, the data on crashes involving drivers aged 65 or older highlights the challenges of aging on driving abilities. Factors such as slower reaction times, reduced vision, and difficulties in processing complex driving environments contribute to higher crash severity rates. There is a clear need for initiatives that focus on extending driver safety education into older age, encouraging regular health and vision check-ups, and advocating for age-friendly road design improvements.

Conclusion: Addressing the Unique Challenges for Young and Older Drivers

The crash data analysis reveals significant challenges faced by both young drivers aged 15-20 and older drivers aged 65 and above. Young drivers are particularly prone to severe crashes due to inexperience, risk-taking behaviors, and environmental factors such as highspeed roads or inadequate road safety features. In contrast, older drivers are more likely to be involved in crashes that result in severe injuries or fatalities due to age-related vulnerabilities and the physical fragility that increases their risk of severe outcomes even in lower-impact crashes.

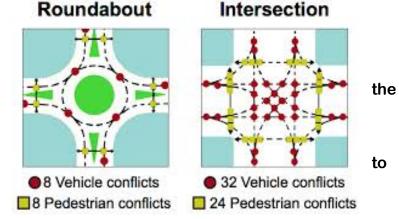
Recognizing the unique needs of these two groups and implementing tailored interventions will be critical in reducing crash severity and frequency, ultimately making roadways safer for everyone. By addressing both fatalities and serious injuries, we can move toward a more comprehensive and effective road safety strategy that benefits all age groups.

How Southwest Missouri Will Achieve Vision Zero

The Path Forward

Addressing the safety challenges highlighted in this safety plan requires a multifaceted approach that encompasses engineering, enforcement, education, and emergency response—often referred to as the "4 E's" of traffic safety.

- 1. Engineering: Investments in road design, such as the implementation of roundabouts, median barriers, and improved lighting, can help reduce the likelihood of severe crashes. Infrastructure projects like better pedestrian crossings, protected bike lanes, and clearer road markings are essential to safeguarding vulnerable road users.
- 2. Enforcement: Strengthening the enforcement of traffic laws, including speed limits and impaired driving regulations, is critical. This could involve increasing the presence of law enforcement on roads with high accident rates and utilizing technology such as red-light cameras and speed enforcement cameras to deter dangerous driving behaviors.
- 3. Education: Public education campaigns that promote safe driving behaviors are equally important. These could focus on the dangers of distracted driving, the importance of seat belt use, and the consequences of impaired driving. Engaging the community through schools, workplaces, and social media can help create a culture of safety.
- 4. Emergency Response: Improving the efficiency and effectiveness of emergency medical services can ensure that when crashes do occur, victims receive timely and appropriate care. This includes ensuring that first responders are well-trained and that hospital facilities are equipped to handle serious trauma cases.


Engineering: Roadway Design Improvements and Speed Control Measures

Roadway Design Improvements

In the Southwest Missouri region, consisting of Jasper, Newton, Barton, and McDonald counties, traffic-related fatalities and serious injuries are significantly influenced by roadway design. The analysis of crash data from 2019-2023 reveals clear patterns in high-risk locations and circumstances, particularly in rural and urban intersections. Implementing roadway design improvements that focus on mitigating these risk factors is essential for reducing the frequency and severity of traffic crashes.

Install Roundabouts at High-Risk Intersections

Intersections, particularly those prone to right-angle (T-bone) collisions, are often site of severe or fatal crashes. Rightangle crashes are particularly dangerous because they often occur at high speeds and result in direct impact the sides of vehicles, which are less structurally reinforced than the front or rear of the car.

Data-Driven Approach

According to the Federal Highway Administration (FHWA), converting traditional intersections to roundabouts can reduce injury crashes by as much as 75%. In Jasper County, which accounts for the highest number of crashes, key intersections along major thoroughfares like HH Highway and U.S. Route 71 have been identified as critical points for safety improvements. Studies show that roundabouts significantly reduce both the number and severity of crashes by slowing vehicles down and eliminating conflict points (such as left turns across traffic).

In Newton County, particularly in Neosho and Joplin, traffic flow through intersections like the U.S. Route 60 and State Route 59 corridor could be enhanced with the introduction of roundabouts. Additionally, these roundabouts could serve as a gateway to calming traffic entering these more urbanized areas from rural highways. In rural areas like McDonald County, where intersections often feature two-lane roads with limited signage, roundabouts could be a low-cost, high-benefit solution. The FHWA has consistently recommended roundabouts for rural junctions due to their proven efficacy in slowing traffic and reducing fatal crashes.

Rumble Strips and Roadway Delineation Enhancements

One engineering approach to reduce head-on collisions on high-speed rural roads is the use of rumble strips combined with enhanced roadway delineation. Rumble strips, when installed along the centerline and edges of the road, can alert drivers through tactile vibration and audible noise when they are veering from their lane. This measure is particularly effective in combating drowsy or distracted driving, which is a common cause of rural road accidents.

Data-Driven Approach A report by the Federal Highway Administration (FHWA) highlights that the implementation of centerline rumble strips can lead to a 44% reduction in headon and opposite-direction sideswipe crashes. When paired

with highly visible pavement markings and reflective raised pavement markers, these enhancements can significantly improve nighttime visibility and overall driver awareness.

On roadways such as State Route 43 in Newton County and Highway 59 in McDonald County, where high-speed travel combined with undivided roads contributes to frequent head-on collisions, implementing rumble strips alongside improved road markings would provide an immediate, cost-effective solution. These measures do not require extensive construction or significant right-of-way space, making them suitable for rapid deployment across rural areas.

Implement Road Widening on High-Speed Rural Roads

Head-on crashes, particularly on rural roads, tend to be catastrophic because of the speed involved and the limited space for driver error. An effective engineering approach to improve safety on highspeed rural roads is road widening.

Expanding the width of existing lanes or adding paved shoulders provides drivers with additional maneuvering space, reducing the likelihood of crashes caused by sudden lane departures. This

measure can also improve recovery space for vehicles, enhancing driver safety in emergency situations.

Data-Driven Approach Studies conducted by the Federal Highway Administration (FHWA) indicate that road widening can lead to a 23% reduction in crashes on rural two-lane roads. On roadways such as State Route 43 in Newton County, Highway 59 in McDonald County, and Highway 96 in Jasper County, where high-speed travel combined with narrow lanes contributes to frequent accidents, road widening could significantly improve safety. Wider lanes and paved shoulders provide vehicles with more space to correct course, reducing the risk of head-on and run-off-road crashes.

Improve Lighting in Both Urban and Rural Areas

Nighttime crashes are disproportionately fatal, as limited visibility hampers drivers' ability to see and react to hazards. In both urban and rural settings, poor lighting has been identified as a contributing factor in serious crashes, especially in pedestrian-heavy areas. Ensuring that streets are well-lit can play a significant role in reducing these crashes.

Data-Driven Approach

According to the National Highway Traffic Safety Administration (NHTSA), 50% of fatal crashes occur at night, even though only 25% of travel happens after dark. Improving lighting infrastructure in areas with high night-time crash frequencies, such as urban centers like Joplin and Neosho, and rural areas like Anderson and Lanagan in McDonald County, could address the visibility issues and reduce the number of fatal accidents.

For rural areas, where large stretches of road remain dark, particularly on high-speed routes, adding consistent lighting at intersections, curves, and pedestrian crossings could dramatically improve visibility. In cities like Joplin and Carthage, increasing the density and quality of street lighting in residential neighborhoods, where pedestrian activity is high, would help ensure the safety of both drivers and vulnerable road users.

Protected Bike Lanes and Safer Pedestrian Crossings

One of the most critical aspects of Vision Zero strategies is protecting vulnerable road users, including pedestrians and cyclists. Pedestrians and cyclists are disproportionately impacted by crashes, particularly in urban environments where vehicles travel at higher speeds and intersections are poorly designed for nonmotorized users. Installing protected bike lanes and enhancing pedestrian crossings is vital for reducing fatalities among these groups.

Data-Driven Approach

In Jasper County, particularly in the cities of Joplin and Carthage, crash data shows an elevated risk for pedestrians and cyclists. Streets with high traffic volumes, such as Main Street in Joplin, would benefit from protected bike lanes that provide a physical barrier between vehicles and cyclists. Research from the Pedestrian and Bicycle Information Center (PBIC) shows that protected bike lanes can reduce injury risks for cyclists by up to 90%. Additionally, raised pedestrian crossings, particularly in downtown areas or near schools, could protect pedestrians by making them more visible to drivers and encouraging vehicles to slow down.

In rural areas like Barton County, where pedestrian infrastructure is limited, simple interventions like flashing pedestrian beacons and marked crosswalks on roads leading to schools, parks, or community centers would improve pedestrian safety. Even though traffic volumes are lower in these areas, the higher speeds and lack of formal crossings increase the risk to pedestrians significantly.

Speed Control Measures

Managing speed is central to reducing both the frequency and severity of crashes. High-speed travel increases the likelihood of crashes and reduces the time available for drivers to react to unexpected hazards. Speed control is especially important in Southwest Missouri, where rural highways with high-speed limits intersect with more urbanized areas, and where speed is a common factor in fatal crashes.

Traffic Calming Devices: Speed Humps and Raised Crosswalks

Traffic calming devices, such as speed humps and raised crosswalks, are proven methods to slow down vehicles in areas where speeding is common. These devices are especially effective in residential neighborhoods, near schools, or in areas where pedestrian traffic is high.

Data-Driven Approach

In Newton County, particularly in the cities of Neosho and Granby, the installation of speed humps in residential neighborhoods and near schools could reduce vehicle speeds and improve safety. Studies from AAA indicate that speed humps can reduce vehicle speeds by as much as 9 mph, which is often the difference between a fatal and non-fatal crash. Furthermore, raised crosswalks near schools or parks create a visual cue for drivers to slow down, thereby reducing the likelihood of pedestrian crashes.

In Joplin and Carthage, where there is a higher volume of vehicle and pedestrian traffic, particularly in downtown areas, traffic calming measures such as curb extensions or narrowed lanes could also be effective. These measures reduce the available space for vehicles to travel at high speeds, encouraging slower driving in areas where pedestrian and bicycle traffic is common.

Speed Management Signage in Rural Areas

Rural areas often experience higher crash severity due to excessive speeding on roads with fewer control measures. While these roads typically have lower traffic volumes, their open nature can lead to higher speeds and reduced attention from drivers. Installing speed management signage, including dynamic speed feedback signs, is a low-cost, effective measure for reducing speed-related crashes.

Data-Driven Approach

According to the Federal Highway Administration (FHWA), dynamic speed feedback signs can reduce speeding by as much as 10%. In areas like State Route 43 and Highway 59 in McDonald County, where speeding has been identified as a key factor in severe crashes, these signs would alert drivers to their speed and encourage self-correction. These signs are particularly effective on long, straight stretches of rural road where drivers may become complacent and exceed safe speeds.

In Barton County, where rural highways connect small towns like Lamar and Liberal, installing rumble strips in combination with speed signage could further alert drivers to upcoming intersections, encouraging them to slow down. Rumble strips provide an audible and tactile warning to drivers, reducing the likelihood of drivers missing critical signage or approaching hazards.

Conclusion

Implementing these engineering and speed control improvements in Southwest Missouri will significantly reduce the number of crashes and fatalities in both rural and urban areas. By prioritizing high-risk intersections for roundabout installation, adding median barriers to rural highways, enhancing street lighting, and protecting vulnerable road users through dedicated bike lanes and pedestrian infrastructure, local agencies can make substantial progress toward the goals of Vision Zero. Additionally, using speed control devices such as humps, raised crosswalks, and speed management signage will further reinforce safe driving behaviors and reduce the risk of high-speed crashes. This multi-pronged approach, grounded in data and tailored to the unique characteristics of Southwest Missouri, is key to creating a safer and more efficient transportation system for all users.

Enforcement: A Comprehensive Strategy

Effective enforcement of traffic laws is a crucial element in reducing the frequency and severity of road crashes. In Southwest Missouri, including the counties of Jasper, Newton, Barton, and McDonald, enforcement efforts must target high-risk behaviors such as speeding, impaired driving, distracted driving, and failure to wear seat belts.

To achieve safer roads, enforcement strategies must incorporate targeted law enforcement

in high-risk areas, stricter penalties for violations, automated enforcement tools, and campaigns advocating for essential laws, such as primary seat belt laws and helmet laws. Additionally, a zero-tolerance policy for alcohol and drugs should be implemented to protect public safety and align with broader national and state goals of reducing traffic fatalities.

This section will explore these strategies in greater depth, presenting data-driven arguments for their implementation and expansion across Southwest Missouri.

Targeted Enforcement in High-Risk Areas

Traffic enforcement is most effective when focused on areas with high rates of crashes, particularly during times of increased risky behavior. Based on crash data from 2019 to 2023, Southwest Missouri exhibits patterns where certain locations and times experience higher crash frequencies. Implementing targeted enforcement at these locations, especially during peak hours, is critical for addressing the root causes of crashes, such as speeding and impaired driving.

High-Crash Zones and Timing

The crash analysis from the region shows that roadways like I-44, US Route 71, and State Route 43 are high-risk zones, particularly during peak times such as Friday and Saturday nights. During these periods, there is a heightened risk of impaired driving, speeding, and other risky behaviors that lead to crashes. Therefore, increasing law enforcement presence in these high-crash areas is essential for improving road safety.

Statistical Impact: The National Highway Traffic Safety Administration (NHTSA) reports that targeted law enforcement presence in high-crash zones can reduce traffic crashes by up to 20%. The effectiveness of such enforcement lies in its visibility, which deters drivers from engaging in risky behaviors such as speeding and driving under the influence.

Increase Law Enforcement Presence

To effectively address high-risk crash areas, law enforcement agencies in Southwest Missouri should focus on scheduling patrols during peak times, such as weekends, when crash rates tend to increase. For example, in Newton County, which has a high incidence of crashes on weekend nights, increased patrolling along highways like US Route 60 and intersections on State Route 59 can help prevent dangerous driving behaviors and improve response times.

Local departments should also take advantage of safety center grants, such as those provided by the Missouri Coalition for Roadway Safety or the Missouri Department of Transportation (MoDOT), to fund enhanced enforcement initiatives like "wolfpacks" or saturation patrols. These operations deploy multiple officers in a concentrated area to aggressively target unsafe driving behaviors, such as speeding or impaired driving.

In Missouri, one successful example is the increased patrols conducted by the Missouri State Highway Patrol (MSHP) under grant funding. During "Operation C.A.R.E." (Combined Accident Reduction Effort) in 2022, MSHP focused on reducing traffic fatalities on high-risk roadways like I-70. They employed saturation patrols and saw a noticeable decline in fatal crashes in those areas. By using a similar approach in Southwest Missouri, local departments can replicate these results, focusing on preventing crashes and ensuring a safer driving environment.

Utilizing available safety grants for saturation patrols can significantly enhance traffic enforcement without overburdening local department budgets.

Automated Enforcement Tools: Speed Cameras and Red-Light Cameras

In addition to increasing officer presence, deploying automated enforcement tools such as speed cameras and red-light cameras can enhance enforcement efforts, particularly in areas with heavy pedestrian traffic or at dangerous intersections. These devices act as force multipliers, allowing law enforcement to monitor compliance with speed limits and traffic signals even when officers are not physically present.

Statistical Impact: According to a study by the Insurance Institute for Highway Safety (IIHS), speed cameras can reduce speeding by up to 63%, and red-light cameras can decrease fatal crashes at intersections by 17%. These numbers suggest that installing automated enforcement tools at high-risk intersections in Southwest Missouri, such as those along I-44 and US Route 71, could significantly reduce crash rates.

Specific Locations for Automated Enforcement

- US Route 60 (Newton County): High incidence of crashes, especially during peak hours.

- Highway 59 near Anderson (McDonald County): Speeding and impaired driving violations are common.

- US Route 71 (Barton County): High traffic volume, frequent speeding violations.

In these areas, automated speed and red-light enforcement would act as both a deterrent and a monitoring tool, ensuring compliance with traffic laws and reducing the likelihood of crashes.

Strict Penalties for High-Risk Behaviors

High-risk behaviors such as speeding, impaired driving, and distracted driving are leading contributors to traffic crashes and fatalities. Increasing penalties for these behaviors is critical for creating a deterrent effect that encourages safer driving habits across Southwest Missouri.

Implementing stricter penalties for these behaviors, such as higher fines or license suspension for repeat offenders, would discourage risky behaviors and improve compliance with traffic laws.

Statistical Impact: According to the Centers for Disease Control and Prevention (CDC), increasing fines for speeding and impaired driving can reduce recidivism rates by up to 30%. In Missouri, speeding fines typically range from \$50 to \$500 depending on the severity of the offense. Increasing the fine for excessive speeding (e.g., driving 20 mph or more above the limit) could act as a greater deterrent.

Additionally, distracted driving—particularly texting while driving—is a growing problem in the region. A Pew Research Center study found that texting while driving increases the likelihood of a crash by 23 times. By implementing higher fines for distracted driving violations and expanding public awareness campaigns, law enforcement could significantly reduce the frequency of these incidents.

Stricter Enforcement of Traffic Laws

Enforcing traffic laws consistently and strictly is critical to achieving safer roads. Increasing penalties for violations such as speeding, reckless driving, and driving under the influence is a key component of this strategy.

Increased Penalties for Traffic Violations

In Southwest Missouri, where speeding is a significant contributor to fatal crashes, increasing fines for speeding violations could act as a deterrent. Higher fines, mandatory driver education programs, and longer license suspensions for repeat offenders would encourage safer driving behaviors.

Statistical Impact: According to a report by the AAA Foundation for Traffic Safety, states that have implemented stricter penalties for speeding violations have seen a 10-15% reduction in speed-related crashes.

Automated Enforcement

Automated enforcement tools, such as speed cameras and red-light cameras, should be expanded across high-risk areas in Southwest Missouri. These devices have been shown to reduce speeding violations and crashes, especially in urban areas where pedestrian and vehicle interaction is frequent.

Statistical Impact: Studies show that automated enforcement tools can reduce speeding by up to 63% and red-light running by 17%, making them an essential component of any comprehensive traffic safety plan.

Enhanced DUI Checkpoints and Distracted Driving Campaigns

DUI checkpoints, particularly during weekend nights and holidays, are an effective tool for reducing impaired driving. In McDonald County, where impaired driving is a leading cause of crashes, increasing the number and frequency of DUI checkpoints would serve as a deterrent to drivers who might otherwise risk driving under the influence.

Statistical Impact: The NHTSA reports that DUI checkpoints can reduce alcohol-related crashes by up to 20%, particularly when combined with public awareness campaigns that educate drivers about the dangers and consequences of impaired driving.

Distracted driving campaigns could be deployed in partnership with schools and workplaces in urban centers like Joplin and Carthage to reach a broader audience, particularly younger drivers who are more likely to engage in distracted driving.

The Case for Primary Seat Belt Laws: A Critical Step Toward Road Safety

Seat belts are among the most effective safety measures in vehicles, yet seat belt usage remains inconsistent in Missouri. Currently, Missouri only enforces seat belt violations as a secondary offense, meaning that drivers cannot be pulled over solely for failing to wear a seat belt. To address this gap in enforcement, Missouri should adopt primary seat belt laws, which allow law enforcement officers to stop drivers solely for not wearing a seat belt.

Proven Effectiveness in Saving Lives

Research from the National Highway Traffic Safety Administration (NHTSA) shows that seat belts reduce the risk of death in crashes by 45% for front-seat passengers and by 60% for those in light trucks. States with primary seat belt laws, such as California and New York, report seat belt usage rates of over 90%, compared to states like Missouri, where the usage rate hovers around 80% due to the lack of primary enforcement.

Statistical Impact: According to the CDC, primary seat belt laws increase seat belt use by 10-15%, which could prevent thousands of fatalities and serious injuries nationwide. In Missouri, adopting primary seat belt laws could potentially save 200-300 lives annually, particularly in rural areas like Barton County where seat belt usage is lower.

Enhanced Law Enforcement Capability

By adopting primary seat belt laws, law enforcement officers would be empowered to stop and ticket drivers solely for failing to wear a seat belt. This increased enforcement capability would likely lead to higher compliance rates and fewer fatalities.

Zero Tolerance for Alcohol and Drugs: A Crucial Policy for Public Safety

The dangers of impaired driving are well-documented, with nearly 30 people dying daily in the United States as a result of drunk-driving crashes, according to the NHTSA. To combat this issue, Southwest Missouri should adopt a zero-tolerance policy for alcohol and drugs, ensuring that any level of impairment results in strict penalties.

Public Safety Imperative

Impaired driving remains one of the leading causes of fatalities in Southwest Missouri. Jasper and McDonald counties consistently report high rates of alcoholrelated crashes. By implementing a zero-tolerance policy, law enforcement would have the authority to issue penalties for any detectable level of impairment, removing

the ambiguity that currently allows some drivers to evade harsher consequences.

Statistical Impact: Zero-tolerance policies have been highly effective in countries like Sweden and Japan, where alcohol-related crashes have decreased by 50% since their implementation. In Missouri, a zero-tolerance policy could reduce impaired driving incidents, particularly among younger drivers and repeat offenders.

Deterrence and Prevention

The certainty of punishment is a powerful deterrent. By enforcing penalties for any level of impairment, Missouri can send a clear message that impaired driving will not be tolerated. This approach would also complement public health goals by discouraging substance use and encouraging healthier behaviors.

The Case for Reinstating the Helmet Law in Missouri

Motorcyclists face a disproportionately high risk of injury and death in crashes, particularly those involving head trauma. Despite this, Missouri repealed its helmet law in 2020, allowing motorcyclists over the age of 26 to ride without a helmet if they have insurance.

Since Missouri repealed its universal helmet law, the state has seen a significant rise in motorcycle fatalities. By 2023, the number of motorcycle deaths reached a record high of 174 statewide, marking a 47% increase in fatalities compared to the period before the law was changed. This surge has been directly linked to the repeal

Each year since the law change, Missouri has seen an additional 45 to 55 motorcyclist deaths, with 2023 standing out as the deadliest year on record for motorcycle crashes. Many safety experts, including those from the Missouri Department of Transportation, attribute much of this increase to the reduced use of helmets.

The data shows that out of the 174 motorcyclists killed in 2023, a significant portion were either not wearing helmets or were wearing non-compliant ones, underscoring the impact of the law change on rider safety. Reinstating the helmet law is essential for reducing fatalities and healthcare costs associated with motorcycle crashes.

Public Safety and Healthcare Costs

According to the Insurance Institute for Highway Safety (IIHS), helmets reduce the risk of death by 42% and the risk of head injury by 69%. Since the repeal of Missouri's helmet law, the state has seen an increase in motorcycle-related fatalities and traumatic brain injuries. Reinstating the helmet law could prevent these avoidable tragedies and reduce the burden on emergency services and healthcare systems.

Statistical Impact: A study by the CDC found that states with universal helmet laws save \$725 million annually in direct costs associated with motorcycle crashes. Reinstating the helmet law in Missouri could save millions of dollars in healthcare expenses by reducing the severity and frequency of injuries sustained in motorcycle crashes.

Education: Building a Culture of Safe Drivers

Education is a key pillar of traffic safety, as it helps foster a culture of responsible driving and safer road behaviors. In Southwest Missouri, targeted educational efforts can significantly reduce risky driving behaviors such as distracted driving, impaired driving, and failure to wear seat belts. By focusing on specific demographics, such as younger and older drivers, and through the implementation of public awareness campaigns and school-based programs, communities can work together to reduce traffic fatalities and injuries. In addition, leveraging existing federal and state education grants can provide critical resources to fund these initiatives.

1. Public Awareness Campaigns

Public awareness campaigns are one of the most effective tools in educating the population about the dangers of high-risk driving behaviors and encouraging safer habits. These campaigns can be broad-reaching, focusing on distracted driving, impaired driving, seat belt use, and seasonal risks. By targeting specific demographics—particularly younger drivers, older drivers, and rural communities—these campaigns can be tailored to address the unique challenges faced by these groups.

• Launch Ongoing Distracted Driving and Impaired Driving Awareness Campaigns Distracted driving and impaired driving are two of the leading causes of traffic crashes in Southwest Missouri. National data shows that drivers aged 15-20 are disproportionately represented in distracted driving crashes, as many younger drivers engage in texting or using their smartphones while driving. Additionally, impaired driving, especially during weekends and late nights, continues to be a major cause of fatal crashes in Missouri.

• The "It Can Wait" Campaign (AT&T)

One highly successful campaign aimed at reducing distracted driving is the "It Can Wait" campaign, launched by AT&T. This national campaign focuses on educating drivers, particularly younger drivers, about the dangers of texting while driving. The campaign features powerful testimonials from crash survivors and their families, along with interactive experiences, such as virtual reality simulations that allow participants to experience the consequences of distracted driving in a controlled environment. The "It Can Wait" campaign has reached millions of people and could be adopted locally in schools and community centers in Southwest Missouri to target young drivers.

• Drive Sober or Get Pulled Over (NHTSA)

For impaired driving, the "Drive Sober or Get Pulled Over" campaign by the National Highway Traffic Safety Administration (NHTSA) has proven highly effective in reducing drunk driving incidents. This campaign runs during high-risk times, such as the holiday season and summer months, when impaired driving incidents tend to spike. The campaign includes targeted enforcement, social media outreach, and partnerships with local law enforcement agencies to emphasize the importance of sober driving. Expanding this campaign locally to bars, restaurants, and event venues in Southwest Missouri could reduce the number of alcohol-related crashes.

• Safe Driving Campaigns Targeting Older Drivers

Older drivers, while experienced, may face challenges related to reaction times, declining vision, and health-related impairments. Educational campaigns targeting this demographic should emphasize defensive driving techniques, the importance of regular health assessments, and adaptive strategies for managing the demands of driving as they age. Additionally, encouraging older drivers to participate in refresher courses, such as the AARP Driver Safety Program, can help them stay sharp and up-to-date with current road safety standards.

Research from the AAA Foundation for Traffic Safety indicates that drivers over the age of 65 are involved in 15% of all fatal crashes, despite making up a smaller portion of the driving population. Educational programs that focus on health assessments (vision checks, cognitive tests, and medication reviews) can reduce the risk of crashes among older drivers by up to 20%. Implementing campaigns in Southwest Missouri through senior centers, healthcare facilities, and community events could help address the specific needs of older drivers.

• Create Seasonal Safety Campaigns for High-Travel Months

Crash data from Southwest Missouri reveals that spring and summer months often see a spike in traffic accidents due to increased travel during holidays, vacations, and warmer weather. Seasonal campaigns during these periods can help raise awareness about the dangers of speeding, distracted driving, and impaired driving, particularly during holiday weekends such as Memorial Day, Independence Day, and Labor Day.

• NHTSA's "Click It or Ticket" Campaign

One notable seasonal safety campaign is "Click It or Ticket," which focuses on seat belt use during the busy summer travel season. This campaign is coordinated by the NHTSA and law enforcement agencies across the country and has been instrumental in increasing seat belt use. In 2019 alone, the campaign resulted in over 14,000 lives saved due to increased seat belt usage. Southwest Missouri can participate in this national campaign, tailoring it to the region's rural and urban populations to ensure that drivers and passengers buckle up.

• "Operation Safe Driver Week" (CVSA)

Another seasonal campaign is "Operation Safe Driver Week" organized by the Commercial Vehicle Safety Alliance (CVSA). This campaign focuses on safe driving behaviors for both commercial and passenger vehicles, with a specific emphasis on speeding, distracted driving, and seat belt use. Conducting a localized version of this campaign in Southwest Missouri, with outreach to commercial drivers and trucking companies, could help address high crash rates involving larger vehicles, particularly on highways such as I-44.

2. School and Community Programs

Engaging schools and communities in traffic safety education is vital for creating long-term behavioral changes, particularly among young drivers and vulnerable road users. By working closely with local schools, law enforcement agencies, and community organizations, these programs can teach teens and the broader community the skills and knowledge necessary to stay safe on the roads.

• Partner with Local Schools for Teen Driver Safety Programs

Teen drivers are at a particularly high risk for crashes due to inexperience and higher rates of engaging in risky behaviors such as speeding and texting while driving. Schools in Southwest Missouri can play a crucial role in teaching students about safe driving practices and empowering them to make responsible choices behind the wheel.

• The National Teen Driver Safety Week

One effective program is National Teen Driver Safety Week, coordinated annually by the NHTSA. During this week, schools can host events, assemblies, and educational activities designed to raise awareness about the leading causes of crashes among teens, such as distracted driving, impaired driving, and failure to wear seat belts. Incentive-based programs can encourage teens to participate, such as offering scholarships, awards, or free driving lessons for completing safety courses or participating in local campaigns.

• "Alive at 25" Program

Another exemplary program is "Alive at 25," an education course designed by the National Safety Council (NSC) that focuses on the unique challenges faced by young drivers. The program teaches defensive driving techniques, risk assessment, and the consequences of risky driving behaviors. By partnering with local high schools, driver education programs, and youth organizations in Southwest Missouri, "Alive at 25" can be used to reduce crashes among teens aged 15-20, a demographic that is overrepresented in crash data.

• Offer Incentives for Participation in Safe Driving Initiatives

Incentives can play a powerful role in encouraging participation in traffic safety programs. Offering rewards such as free driving lessons, discounts on car insurance, or cash prizes can motivate teens and young adults to engage in safe driving initiatives.

• Toyota's TeenDrive365 Program

Toyota's TeenDrive365 Program is one such initiative that offers interactive experiences, contests, and scholarships to encourage teens to adopt safe driving habits. By creating similar programs tailored to Southwest Missouri and offering incentives, local organizations can increase engagement and build a strong culture of road safety among young drivers.

Promote Bicycle and Pedestrian Safety Education in Rural Areas

Bicycle and pedestrian safety is particularly important in rural areas of Southwest Missouri, where infrastructure may be lacking, and non-motorized road users face heightened risks. Educating both drivers and non-drivers on the importance of sharing the road can reduce crashes and fatalities involving cyclists and pedestrians.

• Bike Safe, Walk Safe Program

A program like "Bike Safe, Walk Safe" could be implemented in rural areas of Southwest Missouri to promote awareness about the rules of the road for pedestrians, cyclists, and motorists. This program, originally designed for urban areas, teaches the importance of crosswalk usage, the role of helmet safety, and the importance of reflective gear for cyclists. Through school programs and community workshops, this initiative can be adapted for rural areas where children and adults may not be as familiar with pedestrian and cyclist safety measures.

• Walk and Bike to School Day

Another campaign that could be effective in rural areas is Walk and Bike to School Day, an international event that encourages physical activity and highlights the importance of pedestrian and cyclist safety. Partnering with local schools to participate in this event can raise awareness of the challenges faced by non-motorized road users and provide opportunities for infrastructure improvements, such as safer sidewalks and crosswalks in rural communities.

Funding Educational Campaigns and Programs

To ensure the success and sustainability of public awareness and community education programs, securing funding is critical. Several grants are available at the federal and state levels to support traffic safety education initiatives.

The National Highway Traffic Safety Administration (NHTSA) Grants

The NHTSA offers several grants to state and local governments, non-profit organizations, and educational institutions to support traffic safety initiatives. These grants can be used to fund public awareness campaigns, school-based programs, and law enforcement training. Some of the key grants include:

- The State and Community Highway Safety Grant (Section 402): This grant provides funding to states for programs that address a wide range of highway safety issues, including impaired driving, occupant protection, and distracted driving.

- The National Priority Safety Programs (Section 405): This grant offers funding to support initiatives such as occupant protection, traffic records, and motorcyclist safety.

Safe Routes to School Program (SRTS)

The Safe Routes to School Program (SRTS), funded by the Federal Highway Administration (FHWA), provides funding to communities to create safer environments for children to walk and bike to school. This program can be utilized in rural areas of Southwest Missouri, where infrastructure improvements are needed to ensure the safety of young pedestrians and cyclists. Grants from SRTS can fund the construction of sidewalks, crosswalks, bike paths, and safety education programs.

Missouri Coalition for Roadway Safety

The Missouri Coalition for Roadway Safety offers mini-grants to support local traffic safety education and enforcement initiatives. These grants can be used by community organizations, schools, and local law enforcement agencies to fund public awareness campaigns, teen driver safety programs, and bicycle and pedestrian safety workshops.

Conclusion

By leveraging public awareness campaigns, school-based programs, and community-driven initiatives, Southwest Missouri can build a strong culture of road safety. Educational programs targeting younger drivers, older drivers, and vulnerable road users such as cyclists and pedestrians can reduce the risk of crashes and save lives. Through partnerships with schools, local organizations, and law enforcement, these initiatives can be implemented effectively across the region. Moreover, accessing available education grants will provide the necessary funding to sustain these programs, ensuring that Southwest Missouri continues to make strides toward safer roads for all users.

Emergency Response: Strengthening Coordination and Technology for Faster and More Effective Crash Response

Emergency response plays a critical role in reducing the severity of injuries and saving lives in the aftermath of traffic crashes. In Southwest Missouri, where rural areas like McDonald, Barton, and Newton counties are prone to long response times due to geographic spread and limited infrastructure, improving emergency response is essential for reducing fatalities and serious injuries. Enhancing coordination between emergency services, investing in advanced technology, and building trauma care capacity are crucial strategies to ensure that individuals involved in crashes receive timely and effective care.

1. Enhanced Emergency Response Coordination

In rural areas, the coordination between emergency services—fire departments, Emergency Medical Services (EMS), and law enforcement—is key to improving response times and reducing fatality rates. The challenges posed by geographic isolation, long distances between crash sites and hospitals, and limited staffing at local agencies require a more integrated approach to ensure that help arrives as quickly as possible.

Improve Response Times in Rural Areas

In rural counties like McDonald County, where crashes often occur on remote highways and roads, the time it takes for emergency services to reach the scene can mean the difference between life and death. The National Highway Traffic Safety Administration (NHTSA) has found that delays in response time are a significant factor in rural crash fatalities. While the national average for emergency response times is 18 minutes, rural areas can experience delays of 30 minutes or more, greatly increasing the chances of severe injuries or fatalities.

Coordination Between Local Fire Departments, EMS, and Law Enforcement

Effective emergency response requires seamless communication between local fire departments, EMS, and law enforcement agencies. This coordination can be optimized by creating integrated dispatch systems that centralize the communication process, ensuring that the closest available unit is dispatched to the scene. In Southwest Missouri, this can be accomplished by establishing joint communication centers that serve multiple jurisdictions, reducing confusion and ensuring that all emergency personnel receive the same information in real time.

Data-Driven Approach

A report by the Rural Emergency Medical Services and Trauma Technical Assistance Center (REMSTTAC) suggests that improving coordination between agencies can reduce response times by up to 25% in rural areas. By implementing centralized dispatch systems and shared communication platforms, emergency services in Southwest Missouri could see a significant reduction in response times, ultimately saving lives.

Case Study: Rural Trauma Response Improvement in Wyoming

A similar initiative in rural Wyoming, where trauma response times were reduced by centralizing communication between EMS and law enforcement, resulted in a 30% reduction in response times over a two-year period. This model can be replicated in McDonald, Newton, and Barton counties, where isolated crash sites often experience delays in response due to communication barriers between services.

Training First Responders in Advanced Trauma Care

While improving response times is critical, ensuring that first responders are trained in advanced trauma care is equally important, particularly in rural areas where medical facilities may be far from crash sites. McDonald County, for instance, has limited access to hospitals equipped to handle trauma cases, making it essential that EMS personnel and even local fire departments have the skills to provide life-saving interventions while en route to a hospital.

Trauma Training for EMS and Law Enforcement

First responders in Southwest Missouri should undergo advanced trauma life support (ATLS) training, which equips them with the skills needed to manage severe injuries, control bleeding, and stabilize patients with head, spine, or internal injuries. The American College of Surgeons (ACS) recommends that all EMS personnel and first responders in rural areas receive this type of training to reduce pre-hospital mortality rates.

Statistical Impact

A study published by the Journal of Trauma and Acute Care Surgery found that ATLS training for EMS personnel can reduce the pre-hospital mortality rate in rural trauma patients by up to 40%. Given the challenges of rural EMS in Southwest Missouri, this type of training would significantly improve outcomes for crash victims, particularly in McDonald and Barton counties, where long transport times increase the need for skilled trauma care at the scene.

Establish Regional Trauma Networks

In addition to training individual responders, establishing regional trauma networks that include partnerships between rural hospitals, larger trauma centers, and emergency services can enhance coordination in critical situations. These networks ensure that patients are transferred quickly to facilities that can provide the necessary level of care, whether it's a Level I Trauma Center in Joplin or a smaller rural hospital that can stabilize a patient before transfer.

Case Study: Maryland Trauma Network

The Maryland Institute for Emergency Medical Services Systems (MIEMSS) developed a regional trauma network that links smaller hospitals with major trauma centers, enabling faster transfer of critically injured patients. This approach has resulted in a 20% improvement in trauma survival rates across the state. In Southwest Missouri, creating similar networks, especially between smaller rural hospitals and the larger hospitals in Joplin, could drastically improve patient outcomes.

2. Invest in Technology and Equipment

The availability of modern technology and equipment for first responders is crucial in reducing response times and providing immediate care at crash scenes. Equipping emergency vehicles with advanced technology and ensuring rural hospitals have the necessary trauma infrastructure will vastly improve the region's ability to respond to and manage traffic crashes.

Equip Emergency Vehicles with Real-Time Crash Location Systems

In rural areas, one of the biggest challenges for first responders is locating the crash site quickly, especially on remote roads or highways with limited signage. Real-time crash location systems and improved GPS tracking can significantly reduce the time it takes for emergency vehicles to arrive at the scene.

Crash Location Systems

Real-time crash location systems, such as Next Generation 9-1-1 (NG911), allow dispatchers to provide first responders with precise location data based on GPS coordinates from the crash scene. These systems can also integrate data from connected vehicles, which automatically alert emergency services in the event of a crash and provide real-time updates on the location and severity of the incident.

Case Study: NG911 Implementation in Iowa

In Iowa, the implementation of NG911 technology has reduced emergency response times in rural areas by 15-20%. By equipping first responders in Southwest Missouri with similar technology, emergency services can locate crash sites more efficiently, even in remote areas like Highway 59 near Lanagan in McDonald County, where crash locations are often difficult to access.

Improve GPS Tracking for Quicker Access to Crash Scenes

Ensuring that all emergency vehicles, including ambulances, fire trucks, and law enforcement vehicles, are equipped with advanced GPS systems is essential for improving response times. These systems allow dispatch centers to track the location of each unit in real time, enabling them to deploy the closest available resource to the crash scene.

Data-Driven Approach

A study conducted by the National Public Safety Telecommunications Council (NPSTC) found that GPS-equipped emergency vehicles were able to reduce their response times by an average of 18%. In Southwest Missouri, implementing this technology could significantly improve access to crash sites in rural areas, where delays are often caused by the time it takes to locate and reach the crash scene. Ensure Hospitals in Rural Counties Have the Necessary Trauma Care Infrastructure While equipping emergency vehicles and improving coordination can reduce response times, it is equally important that rural hospitals are equipped to handle severe trauma cases. In rural areas like Barton and Newton counties, hospitals often lack the necessary infrastructure to manage severe injuries from traffic crashes, forcing patients to be transferred to larger hospitals in Joplin or Springfield. This can lead to critical delays in receiving life-saving treatment.

Trauma Care Infrastructure

Ensuring that rural hospitals have the necessary trauma care infrastructure—such as dedicated trauma bays, advanced imaging equipment (CT/MRI), and blood transfusion services—is vital for stabilizing patients before they are transferred to larger trauma centers. Hospitals should also be equipped with telemedicine capabilities that allow them to consult with trauma specialists at larger hospitals for immediate decision-making in critical cases.

Case Study: Georgia Rural Trauma Initiative

In Georgia, a rural trauma initiative focused on upgrading trauma infrastructure in small, rural hospitals reduced the time to definitive care for trauma patients by 35%. The initiative provided grants to rural hospitals for equipment purchases, staff training, and telemedicine capabilities, which allowed them to stabilize patients more effectively before transferring them to larger facilities. In Southwest Missouri, a similar initiative could improve outcomes for trauma patients in rural areas, reducing the need for long-distance transfers and increasing survival rates.

Investing in Air Ambulance Services

In remote rural areas where ground transport may take too long, air ambulances can play a critical role in reducing response times and providing rapid transport to trauma centers. Investing in air ambulance services and ensuring that dispatch systems can coordinate air and ground resources effectively is key to improving emergency response in areas like McDonald County.

Data-Driven Approach

The Journal of the American Medical Association (JAMA) found that the use of air ambulances in rural areas reduced trauma mortality rates by 24%. In Southwest Missouri, expanding air ambulance services and ensuring that they are fully integrated into emergency response systems could save lives by reducing transport times to trauma centers in critical cases.

Conclusion

Enhancing emergency response in Southwest Missouri requires a multi-faceted approach that includes improving coordination between local fire departments, EMS, and law enforcement, investing in advanced technology, and upgrading trauma care infrastructure at rural hospitals. By optimizing communication systems, equipping emergency vehicles with real-time location tracking, and ensuring that first responders are trained in advanced trauma care, the region can significantly reduce response times and improve outcomes for crash victims. Additionally, creating regional trauma networks and investing in air ambulance services will ensure that even the most remote areas of Southwest Missouri are covered by a robust and responsive emergency system.

Promoting Alternative Transportation

Promoting Alternative Transportation: A Strategic Move to Reduce Road Fatalities

As the number of vehicles on the road continues to grow, so too does the incidence of trafficrelated fatalities. Every year, thousands of lives are lost due to vehicle crashes—lives that could be saved through strategic policy changes and a shift in how we approach transportation. One of the most effective ways to reduce road fatalities is by promoting alternative modes of transportation, such as public transit, cycling, and walking. This essay argues that encouraging the use of alternative transportation not only saves lives but also benefits public health, reduces environmental impact, and fosters more vibrant, connected communities.

Reducing Road Fatalities

The primary reason for promoting alternative transportation is its potential to significantly reduce road fatalities. Motor vehicle crashes are a leading cause of death, particularly among young people. The risk of fatal accidents is inherently higher when more vehicles are on the road, and the complexity of traffic interactions increases. By encouraging people to use alternative modes of transportation, such as public transit, biking, or walking, we can reduce the number of vehicles on the road and, consequently, the number of fatal crashes.

Public transportation is statistically much safer than driving. For example, buses and trains have lower crash rates per mile traveled compared to private vehicles. Cyclists and pedestrians, when provided with safe infrastructure, such as dedicated bike lanes and well-designed crosswalks, also experience fewer fatalities. By reducing the reliance on cars and increasing the use of these safer transportation modes, communities can dramatically lower the number of traffic deaths.

Improving Public Health

Beyond reducing fatalities, promoting alternative transportation has significant public health benefits. Regular physical activity is essential for maintaining good health, and active transportation modes like walking and cycling provide an easy and accessible way for people to integrate exercise into their daily routines. Increased physical activity helps prevent chronic diseases such as obesity, heart disease, and diabetes, which are major public health concerns.

Additionally, the reduction in air pollution that comes from fewer vehicles on the road leads to better respiratory health for the entire population. Traffic-related air pollution is a significant contributor to conditions such as asthma and other respiratory issues, especially in urban areas. By promoting alternative transportation, we can improve air quality and, in turn, reduce the incidence of respiratory diseases, leading to healthier communities overall.

Environmental Benefits

Promoting alternative transportation also contributes to environmental sustainability, which is increasingly important in the face of climate change. The transportation sector is a major source of greenhouse gas emissions, with private vehicles being the primary contributors. By shifting some of the transportation burden to public transit, cycling, and walking, we can reduce the overall carbon footprint of transportation.

Public transit systems, particularly when powered by renewable energy, are far more energy-efficient per passenger mile than private vehicles. Cycling and walking have virtually no environmental impact, making them the most sustainable modes of transportation. Encouraging these alternatives helps decrease the demand for fossil fuels, reduce emissions, and mitigate the effects of climate change. In doing so, we not only protect the planet but also create a cleaner, healthier environment for future generations.

Enhancing Community Connectivity and Equity

Promoting alternative transportation also enhances community connectivity and social equity. When communities invest in infrastructure that supports public transit, cycling, and walking, they create more accessible, inclusive environments. This is especially important for individuals who cannot afford a car, are unable to drive due to age or disability, or simply prefer not to rely on private vehicles.

Improved public transportation and safe, walkable neighborhoods enable people of all income levels and abilities to access jobs, education, healthcare, and social opportunities. This fosters a sense of community and reduces social isolation, particularly in urban areas. Additionally, the presence of pedestrians and cyclists on the streets encourages social interactions, strengthens neighborhood bonds, and contributes to a more vibrant public life.

Reducing Traffic Congestion and Costs

Traffic congestion is a major issue in many urban areas, leading to lost time, increased stress, and higher economic costs. By promoting alternative transportation, we can alleviate traffic congestion, making travel more efficient for everyone. Fewer cars on the road mean smoother traffic flow, shorter commute times, and less frustration for drivers and passengers alike.

Moreover, the costs associated with road maintenance and expansion can be significantly reduced when fewer vehicles use the roads. Public transit infrastructure, while requiring initial investment, is more cost-effective in the long run due to its ability to move large numbers of people efficiently. Cyclists and pedestrians cause far less wear and tear on roads, further reducing maintenance costs. The savings generated from reduced congestion and road maintenance can be reinvested into further improving alternative transportation options, creating a positive cycle of benefits.

Conclusion

Promoting alternative transportation is a strategic and effective approach to reducing road fatalities, improving public health, protecting the environment, and enhancing community connectivity. By encouraging the use of public transit, cycling, and walking, we can create safer, more sustainable, and more equitable communities. The evidence is clear: reducing our reliance on private vehicles not only saves lives but also contributes to the overall well-being of society. It is time for policymakers, urban planners, and communities to embrace and promote alternative transportation as a key solution to the many challenges we face today.

Investing in Public Transportation: Reduced Fatalities and Serious Injuries Through Congestion Reduction

Transportation is the backbone of any modern society, enabling people to connect with jobs, education, healthcare, and other vital services. However, with increased reliance on private vehicles, our roads have become increasingly dangerous, with alarming rates of traffic-related fatalities and serious injuries.

To address this growing concern, investing in public transportation is a strategic and necessary step. Public transportation not only provides a safer alternative to driving but also has the potential to significantly reduce road congestion, lower emissions, and improve overall public health.

Public Transportation as a Safer Alternative

The most compelling argument for investing in public transportation is its ability to provide a safer mode of travel compared to private vehicles. Research consistently shows that public transportation is far safer than driving. According to the National Safety Council, riding a bus is 10 times safer per mile traveled than traveling by car. Trains, light rail, and other forms of public transit offer similar safety advantages. The reasons are clear: public transportation vehicles are operated by professional drivers, who are trained to adhere to strict safety protocols, and the vehicles themselves are subject to rigorous safety standards and regular maintenance.

Reducing Road Congestion and Its Dangers

Investing in public transportation can also help alleviate road congestion, which is a major contributor to traffic accidents. Congested roads lead to aggressive driving behaviors, such as speeding, tailgating, and frequent lane changes, all of which increase the risk of crashes. Furthermore, stop-and-go traffic patterns associated with congestion can result in rear-end collisions and other types of accidents.

Public transportation, particularly high-capacity systems like buses, trains, and subways, can move large numbers of people efficiently, reducing the number of individual vehicles on the road. This decrease in traffic volume not only eases congestion but also reduces the

chances of crashes, making roads safer for everyone. In cities where public transportation is well-developed, such as New York City and San Francisco, traffic-related fatalities are significantly lower compared to cities with less robust transit systems.

Environmental and Public Health Benefits

Beyond improving road safety, public transportation offers significant environmental and public health benefits that contribute to overall safety and well-being. Transportation is one of the largest sources of greenhouse gas emissions, contributing to air pollution that exacerbates respiratory illnesses, heart disease, and other health conditions. By investing in public transportation, we can reduce our reliance on private vehicles, thereby lowering emissions and improving air quality.

Cleaner air leads to better public health outcomes, reducing the incidence of respiratory and cardiovascular diseases that are often exacerbated by pollution. Healthier populations are less likely to suffer from conditions that can impair their ability to drive safely, further reducing the risk of traffic accidents. Additionally, public transportation systems that promote walking or cycling as part of the commute encourage physical activity, which has been shown to improve overall health and reduce the risk of chronic diseases.

Social Equity and Accessibility

Public transportation is also a critical component of social equity, ensuring that all individuals, regardless of income or physical ability, have access to safe and reliable transportation. For many low-income individuals and families, owning a car is financially out of reach, leaving them dependent on public transportation for their daily needs. By investing in and expanding public transportation networks, we can ensure that everyone has access to safe travel options, reducing the reliance on potentially unsafe alternative means of transportation, such as biking or walking along busy roads.

Furthermore, public transportation systems can be designed to accommodate individuals with disabilities, providing safe and accessible travel options for everyone. Ensuring that all members of society have access to safe transportation reduces disparities in traffic-related fatalities and injuries, making our communities safer and more inclusive. Economic Efficiency and Long-Term Savings

Investing in public transportation is not only a safety measure but also an economically efficient one. While the initial costs of developing and expanding public transportation systems can be significant, the long-term savings in terms of reduced healthcare costs, fewer traffic accidents, and less infrastructure maintenance are substantial. Fewer accidents mean fewer emergency response calls, less strain on healthcare systems, and lower insurance premiums for everyone.

Moreover, public transportation systems tend to spur economic development by making urban areas more accessible and attractive to businesses. This increased economic activity can lead to job creation, higher property values, and a broader tax base, which can be reinvested into maintaining and expanding transportation infrastructure.

Addressing Criticisms

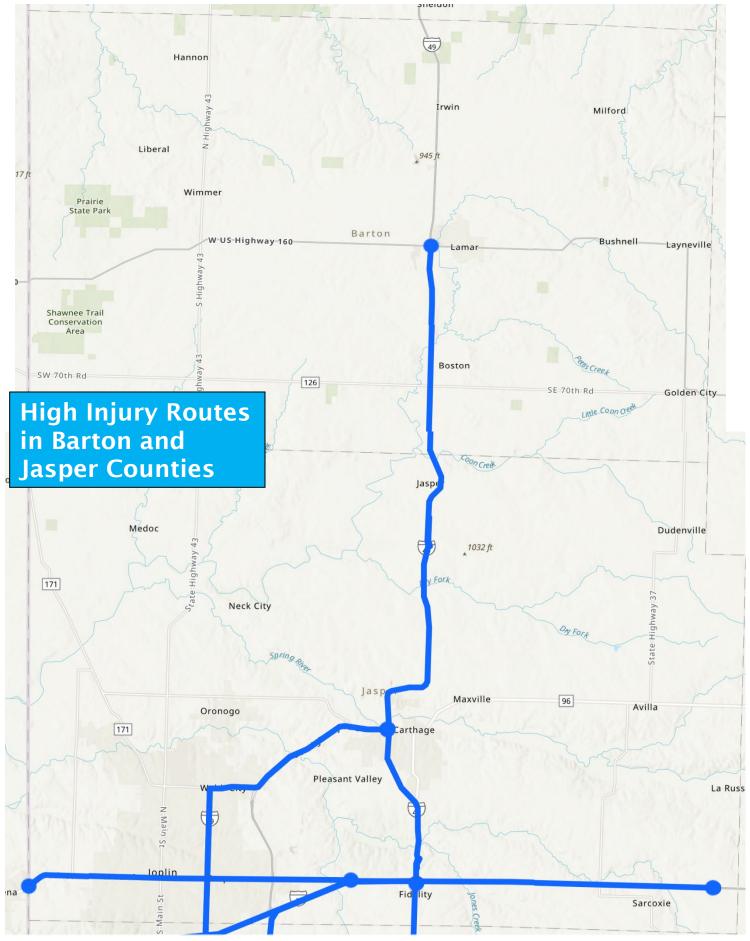
Critics of public transportation investment often argue that it is costly and that the funds could be better spent elsewhere. However, this perspective overlooks the broader societal benefits of public transportation. The cost of not investing in public transportation— continued traffic congestion, higher accident rates, increased pollution, and rising healthcare costs—far outweighs the initial investment in transit systems. Moreover, public transportation projects can be funded through a combination of federal, state, and local sources, as well as public-private partnerships, spreading the financial burden and making it more manageable.

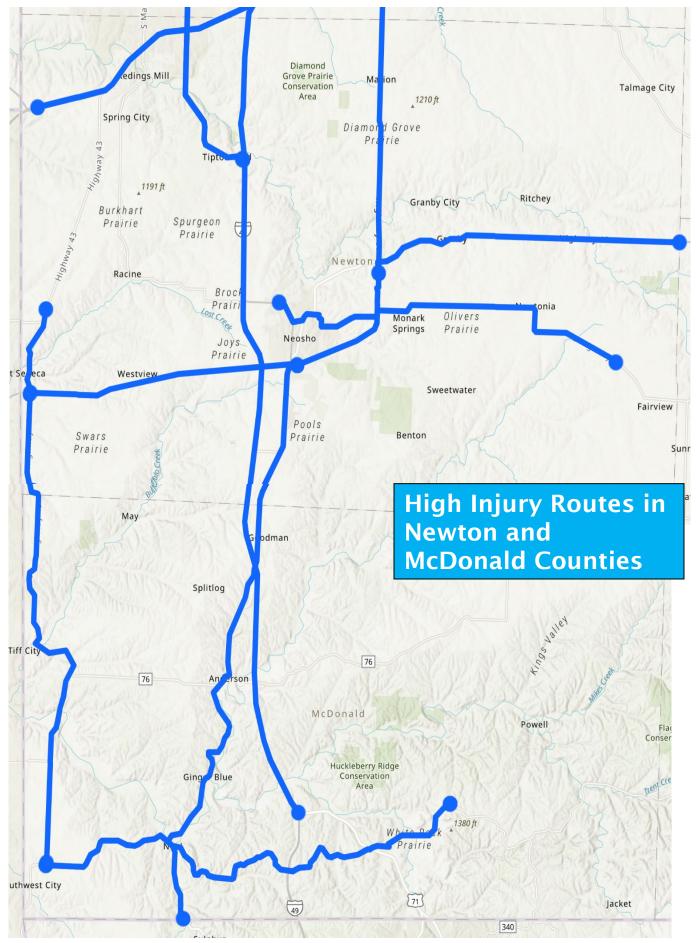
Conclusion

In conclusion, investing in public transportation is a critical and strategic move to reduce traffic-related fatalities and serious injuries. Public transportation provides a safer alternative to driving, alleviates road congestion, and offers significant environmental and public health benefits. It also promotes social equity, ensures accessibility for all, and is economically efficient in the long term. By prioritizing investment in public transportation, we can create safer, healthier, and more sustainable communities, protecting the lives and wellbeing of all citizens. The time to invest in public transportation is now, before more lives are needlessly lost on our roads.

All Modes High Injury Network

Traffic Safety Plan: High Injury Network (HIN)


Introduction


A critical component of any traffic safety plan is identifying roadways where serious injuries and fatalities are concentrated, commonly referred to as the High Injury Network (HIN). In Jasper, Newton, McDonald, and Barton counties, our analysis of crash data from 2019 to 2023 identified ten key corridors that account for a disproportionate number of severe crashes. While these roads comprise less than 8% of the total 3,700 centerline miles, they are responsible for approximately 38.5% of all serious injuries and fatalities (MoDOT, 2023). Addressing these corridors is essential to reducing the region's traffic-related deaths and injuries. This narrative will examine the specific characteristics of the top ten high-injury roadways, their crash frequency, and their relationship to the broader road network. Additionally, it will outline potential interventions to improve safety on these dangerous corridors.

Defining the High Injury Network

Between 2019 and 2023, a total of 924 serious injuries or fatalities were recorded in the fourcounty area. However, 356 of these crashes occurred on just ten roadways, which represent a small fraction of the overall network but account for a substantial portion of the most severe incidents (MoDOT, 2023). These ten roads collectively span 295.2 miles, further emphasizing that a limited number of routes are contributing disproportionately to the region's crash burden (MoDOT, 2023). The top ten roadways for serious injuries and fatalities are as follows:

- MO Highway 43 South 68 crashes (26.4 miles)
- Interstate 49 South Loop / Rangeline Road 41 crashes (23.1 miles)
- MO Highway 86 East 38 crashes (17.7 miles)
- US 60 East 36 crashes (33.8 miles)
- MO Highway 59 South 30 crashes (14.1 miles)
- Interstate 44 East 29 crashes (32.1 miles)
- Interstate 44 West 25 crashes (30.5 miles)
- MO 66 East 24 crashes (14.6 miles)
- Interstate 49 North 23 crashes (78.4 miles)
- MO 90 East 22 crashes (24.5 miles)

These roadways are part of the High Injury Network and demand targeted improvements to reduce the number and severity of crashes (MoDOT, 2023).

Detailed Analysis of Each High-Injury Corridor

1. MO Highway 43 South (26.4 miles) - 68 Crashes

- Crash Patterns: Predominantly right-angle collisions, often occurring at intersections with local roads. Many incidents involve high-speed impacts due to the absence of traffic signals or roundabouts.
- High-Risk Conditions: Most crashes occur during daylight hours under dry conditions, suggesting that driver behavior and high-speed travel are key factors.
- Unique Challenges: The highway serves as a major route for both commercial and passenger traffic, contributing to congestion and increased crash risks during peak hours.
- Potential Interventions: Consider adding roundabouts or signalized intersections at key points, along with improved signage and roadway lighting to enhance safety.

2. Interstate 49 South Loop / Rangeline Road (23.1 miles) - 41 Crashes

- Crash Patterns: Common issues include side-impact collisions and rear-end crashes, particularly during periods of congestion.
- High-Risk Conditions: Crashes frequently occur during rush hours under both dry and wet conditions, indicating a need for better traffic flow management.
- Unique Challenges: The roadway is a key economic corridor, connecting multiple business hubs. This increases traffic density and the potential for multivehicle crashes.
- Potential Interventions: Implement adaptive traffic signal control systems and expand lanes in high-traffic areas to alleviate congestion and reduce crash risks.

3. MO Highway 86 East (17.7 miles) - 38 Crashes

- Crash Patterns: A mix of single-vehicle run-off-road incidents and head-on collisions due to the curved alignment of the roadway.
- High-Risk Conditions: Nighttime crashes are common, particularly during wet weather conditions, highlighting the need for improved visibility and roadway lighting.
- Unique Challenges: The highway's rural nature and limited shoulder width contribute to severe crashes when vehicles leave the roadway.
- Potential Interventions: Widen shoulders, add rumble strips, and enhance roadway lighting along critical sections to reduce run-off-road incidents.

4. US 60 East (33.8 miles) - 36 Crashes

- Crash Patterns: High frequency of rear-end collisions and T-bone incidents at intersections, often involving vehicles merging from rural roads.
- High-Risk Conditions: Many crashes occur during daylight under clear weather conditions, suggesting that driver distraction and speeding are contributing factors.
- Unique Challenges: The roadway serves a mix of local and through traffic, creating varied speed differentials that can lead to collisions.
- Potential Interventions: Install median barriers to prevent cross-median crashes and improve intersection designs to include turn lanes and signal timing adjustments.

5. MO Highway 59 South (14.1 miles) - 30 Crashes

- Crash Patterns: Out-of-control incidents and head-on collisions are prevalent, often on curved segments of the highway.
- High-Risk Conditions: Crashes are most frequent during wet weather, highlighting issues with road surface conditions and poor drainage.
- Unique Challenges: The highway's alignment includes sharp curves and steep grades, contributing to loss of control in adverse weather.
- Potential Interventions: Improve drainage, re-pave sections with better traction materials, and install chevron signs on sharp curves for better visibility.

6. Interstate 44 East & West (62.6 miles combined) - 54 Crashes

- Crash Patterns: Common issues include rear-end collisions during peak traffic and high-speed crashes due to interchange merges.
- High-Risk Conditions: Daytime crashes are prevalent under clear conditions, indicating the impact of high traffic volumes.
- Unique Challenges: The interstate serves as a major freight corridor, leading to interactions between heavy trucks and passenger vehicles.
- Potential Interventions: Consider expanding lanes, adding truck-only lanes, and improving merge zones to reduce congestion and speed differentials.

7. MO 66 East (14.6 miles) - 24 Crashes

- Crash Patterns: Predominantly intersection-related crashes due to a lack of controlled traffic flow.
- High-Risk Conditions: Crashes occur mostly during daylight and dry conditions, pointing to issues with driver speed and intersection control.
- Unique Challenges: The road acts as a feeder route to larger highways, creating traffic density during commute times.
- Potential Interventions: Install traffic signals or roundabouts at high-crash intersections and enhance pedestrian crossings.

8. Interstate 49 North (78.4 miles) - 23 Crashes

- Crash Patterns: Includes a mix of single-vehicle crashes and multi-vehicle collisions, often due to high speeds and driver fatigue.
- High-Risk Conditions: Nighttime crashes are frequent, suggesting the need for enhanced roadway lighting and rest area improvements.
- Unique Challenges: The long stretch contributes to driver fatigue, especially during night travel.
- Potential Interventions: Increase lighting, install fatigue warning signs, and provide more rest areas.

9. MO 90 East (24.5 miles) - 22 Crashes

- Crash Patterns: High incidence of single-vehicle run-off-road incidents and head-on collisions, particularly in curved areas.
- High-Risk Conditions: Daylight and wet conditions are common during crashes, indicating issues with road grip.
- Unique Challenges: Limited roadway shoulders and sharp curves present challenges for drivers.
- Potential Interventions: Widen shoulders, add rumble strips, and re-surface with high-traction materials.

Each analysis combines crash patterns, conditions, and unique challenges with targeted interventions, offering a comprehensive view of the safety issues and potential improvements for each high-injury corridor.

The Relationship Between the HIN and Total Roadway Network

The total road network in Jasper, Newton, McDonald, and Barton counties is approximately 3,700 miles, comprising highways, arterial streets, rural roads, and local streets (MoDOT, 2023). The top ten roadways, which represent only 8% of this total, account for over one-third of all serious injuries and fatalities. This imbalance suggests that while the majority of the road network sees relatively low crash rates, a select group of roadways poses a significantly higher risk to drivers, pedestrians, and cyclists (FHWA, 2023).

For example, MO Highway 43 South is a critical corridor for both commercial and passenger vehicles, leading to frequent high-speed crashes (MoDOT, 2023). Similarly, Interstate 49 South Loop / Rangeline Road is a major route that connects several economic hubs, creating congestion and dangerous conditions, particularly during rush hours. Roads like MO Highway 86 East and US 60 East serve rural communities as well as long-distance travelers, and their mix of high-speed limits, limited safety features, and occasional poor visibility contribute to their high crash rates (MoDOT, 2023).

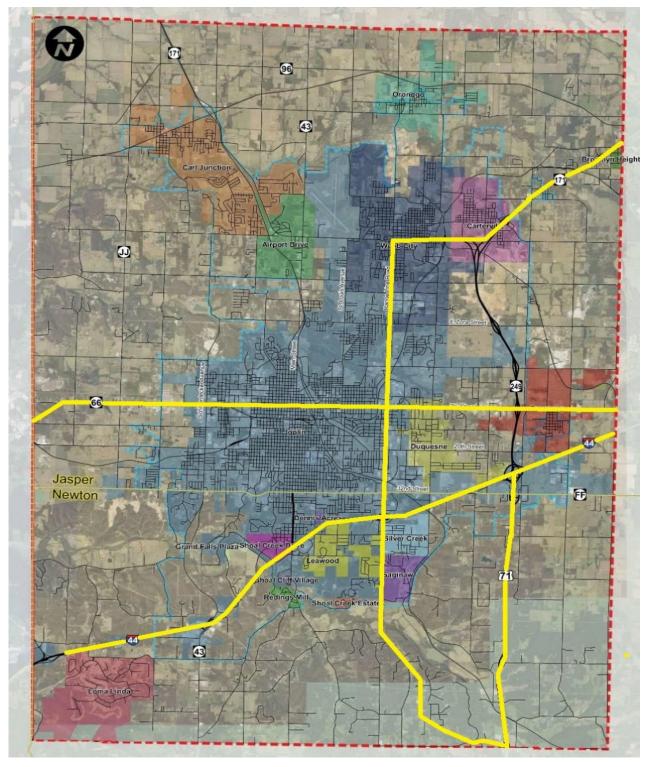
By identifying and addressing these dangerous corridors, our communities and stakeholders can make significant progress in reducing severe crashes and fatalities (FHWA, 2023).

Enhancing Traffic Safety in the Joplin Metropolitan Area: Aligning High-Injury Corridor Improvements with JATSO's Vision Zero Plan

Several of the high-injury routes identified in this analysis are situated within the Joplin metropolitan area, which means they fall under the jurisdiction of the Joplin Area Transportation Study Organization (JATSO). As the designated Metropolitan Planning Organization (MPO) for the Joplin metro area, JATSO plays a critical role in coordinating transportation planning and improvements across the region. This includes oversight of key traffic corridors, facilitating regional collaboration, and ensuring that transportation projects align with broader safety and mobility goals.

JATSO's responsibilities encompass a range of activities, such as traffic analysis, transportation modeling, and planning for future infrastructure needs. This regional planning approach is crucial for the effective management of high-injury routes, especially those that experience high volumes of traffic and complex safety challenges. The organization's leadership in traffic planning makes it a vital partner in efforts to address safety concerns on roadways like portions of Interstate 44, MO Highway 43, and Rangeline Road, which are all critical to the area's transportation network and economic vitality.

A cornerstone of JATSO's commitment to improving roadway safety is its adoption of a Vision Zero Plan. Vision Zero is a global initiative that aims to eliminate all traffic-related fatalities and severe injuries by fostering a proactive, systemic approach to traffic safety. Unlike traditional traffic safety programs that often focus solely on driver behavior, Vision Zero emphasizes that no loss of life is acceptable and that the transportation system should be designed to account for human error. The plan focuses on creating safer street designs, reducing speeds, enhancing enforcement, and fostering a culture of safety through community engagement and public education.


The JATSO Vision Zero Plan includes detailed strategies and data-driven recommendations for addressing high-risk areas, particularly those within the metropolitan boundary. For example, the plan might recommend interventions like improved intersection designs, enhanced pedestrian crossings, and speed management strategies on high-traffic corridors. These recommendations are tailored to the unique characteristics of each route, considering factors such as traffic volume, crash history, and the presence of vulnerable road users like pedestrians and cyclists.

Given the complexity and high-traffic nature of these routes, it is essential that all safety improvements for roadways within the Joplin metropolitan area align with the Vision Zero framework outlined by JATSO. Doing so not only ensures that safety interventions are consistent with regional goals but also allows for the leveraging of JATSO's expertise and resources in implementing effective, long-term solutions. The Vision Zero Plan's holistic approach is particularly valuable for addressing high-injury corridors that are shared across municipal boundaries or that serve as critical connectors between urban and rural areas.

For stakeholders, including city planners, law enforcement, and community organizations, referring to the JATSO Vision Zero Plan provides a roadmap for best practices in traffic safety. It helps to ensure that proposed solutions are evidence-based, feasible, and tailored to the specific needs of the Joplin area. This coordination is key to addressing the

challenges posed by these high-injury routes and achieving the ultimate goal of zero trafficrelated deaths and serious injuries across the region.

In summary, the high-injury routes within the Joplin metropolitan area benefit from the strategic oversight of JATSO and its commitment to Vision Zero principles. By adhering to the recommendations within the JATSO Vision Zero Plan, the region can implement targeted improvements that address the root causes of crashes, reduce traffic-related fatalities and injuries, and create safer, more accessible roadways for all users. This approach not only improves safety on these critical corridors but also strengthens the overall transportation system, contributing to a more vibrant, connected, and secure community.

Page | 100

Aligning High-Injury Corridor Improvements with Carthage's Vision Zero Plan

Some of the high-injury routes identified in this analysis are also situated within Carthage. As a proactive city committed to traffic safety, Carthage has developed and adopted a comprehensive Vision Zero Action Plan aimed at eliminating fatal and serious injury crashes by 2035. The city's leadership and strategic planning position it as a critical participant in regional safety enhancements.

Carthage's Vision Zero Plan is part of the broader Safe Streets and Roads for All (SS4A) initiative and is designed to align with regional transportation safety goals. This plan is vital for managing high-risk corridors and integrating improvements that address traffic safety holistically. The plan not only outlines strategies for addressing accident-prone routes but also emphasizes collaboration with public officials, consultants, and community stakeholders to enhance safety measures.

The City of Carthage focuses on several key elements, including safety analysis, community engagement, and equitable project selection to ensure a balanced approach to traffic management. This involves leveraging

data from traffic volume, crash history, proximity to schools, and the presence of vulnerable road users to guide project prioritization. The commitment includes policy adjustments, infrastructure redesigns, and comprehensive monitoring to achieve significant reductions in traffic incidents.

Carthage's Vision Zero strategy involves detailed recommendations tailored to specific routes, including intersection redesigns, enhanced pedestrian and bicycle facilities, and speed management solutions. This targeted approach considers each corridor's unique characteristics, enabling solutions that prioritize safety while maintaining traffic flow and accessibility. The plan emphasizes that safety improvements should be equitable, particularly for disadvantaged areas that may otherwise be overlooked.

For city planners, law enforcement, and community partners, the Carthage Vision Zero Plan serves as a roadmap for best practices in traffic safety. By following these guidelines, stakeholders can implement effective, data-driven strategies that enhance public safety and align with regional transportation goals. The focus on collaboration and evidence-based planning supports a unified effort to reduce traffic-related fatalities and injuries.

In summary, by aligning safety efforts with the Carthage Vision Zero Plan, we can address high-injury routes with coordinated, impactful improvements. Carthage's leadership in traffic safety provides a model for regional initiatives, fostering safer, more connected communities and contributing to a robust transportation system that prioritizes the well-being of all road users.

Aligning High-Injury Corridor Improvements with Webb City's Upcoming Vision Zero Plan

The City of Webb City, Missouri, has been awarded a FY 2024 Planning and Demonstration Grant in the amount of \$119,794 from federal funding to support the development of a comprehensive safety action plan. This project, named the "Webb City Safety Plan," represents a proactive step toward enhancing roadway safety and reducing traffic-related fatalities within the city.

With a population of approximately 13,165 residents, Webb City operates primarily within a rural land-use context. Despite the lower-density setting, Webb City has experienced two traffic fatalities over recent years (2017-2021), underscoring the importance of a focused safety initiative. Webb City Safety Plan will address these

concerns by analyzing high-risk corridors, proposing evidence-based interventions, and setting measurable targets to reduce crash rates, protect vulnerable road users, and improve overall traffic safety.

While this grant is not specifically allocated to underserved communities, Webb City's commitment to inclusivity ensures that the benefits of the safety plan will extend to all residents. An emphasis on equitable safety measures across neighborhoods will promote safe and accessible streets for all, enhancing both quality of life and community cohesion.

The plan's development process will be closely coordinated with Webb City leadership and community stakeholders to ensure that it aligns seamlessly with the city's long-term Vision Zero goals. By working in concert with local officials, planners, and community members, the Webb City Safety Plan will build on local knowledge, address specific safety concerns, and tailor solutions to the community's unique characteristics. This collaborative approach will also involve feedback loops to adapt the plan based on community input and evolving needs, maintaining Webb City's commitment to transparency and stakeholder engagement.

Additionally, the Webb City Safety Plan will harmonize with regional and national safety initiatives, including the Safe Streets and Roads for All (SS4A) program. This alignment with SS4A ensures that Webb City is not only adhering to best practices in traffic safety but also contributing to a cohesive regional strategy to eliminate traffic-related fatalities.

In summary, by developing this comprehensive safety action plan in collaboration with city leadership and community stakeholders, Webb City is setting a foundation for future infrastructure improvements, policy changes, and safety programs that pave the way toward a safer, more connected, and resilient city for all road users.

Addressing the High Injury Network

The identification of the HIN enables a targeted approach to traffic safety, focusing resources on high-risk areas. Several key strategies can be employed to reduce the frequency and severity of crashes on the High Injury Network:

1. Engineering Improvements

- Roadway Design: Enhancing road design is a fundamental strategy to make these highrisk corridors safer. Solutions such as adding centerline rumble strips, improving lighting, widening shoulders, and upgrading signage can mitigate the risk of serious crashes. For instance, installing roundabouts at high-crash intersections has been proven to reduce the likelihood of severe head-on and side-impact collisions (FHWA, 2023).

- Pedestrian and Cyclist Safety: Many of the HIN roadways, such as MO Highway 43 South and Rangeline Road, lack sufficient infrastructure for pedestrians and cyclists, leading to increased fatalities in these user groups. Adding crosswalks, pedestrian refuge islands, and protected bike lanes will create safer environments for non-motorized road users (NHTSA, 2023).

2. Enforcement and Regulation

- Speed Limit Adjustments: Speed is a primary factor in many of the crashes on the HIN, especially on rural highways like Interstate 44 and Interstate 49. Reducing speed limits in high-risk areas and increasing enforcement efforts can reduce crash severity (FHWA, 2023).

- Targeted Enforcement: Deploying targeted law enforcement resources to high-crash locations can deter unsafe driving behaviors such as speeding, impaired driving, and distracted driving. Automated speed cameras can be an effective solution in high-risk areas (NHTSA, 2023).

3. Education and Public Awareness

- Public Awareness Campaigns: Educating the public about the dangers associated with specific high-injury corridors can foster safer driving habits. Public awareness campaigns focused on reducing speeding, encouraging seatbelt use, and discouraging distracted driving can be particularly effective when combined with targeted enforcement (NHTSA, 2023).

- Community Engagement: Engaging with local communities to understand their safety concerns and encourage safer behaviors is crucial. Public workshops, educational outreach, and partnerships with local businesses can help foster a culture of safety and community-driven solutions (FHWA, 2023).

4. Data-Driven Approaches

- Crash Data Analysis: Continuously analyzing crash data will ensure that interventions remain effective. Data on crash trends, times of day, and weather conditions can help refine and target safety measures for maximum impact (MoDOT, 2023).

- Monitoring and Evaluation: Evaluating the effectiveness of implemented interventions is key. Metrics such as reductions in crashes and injuries can track the progress of the safety plan and ensure that resources are being used effectively (NHTSA, 2023).

Conclusion

The High Injury Network in Jasper, Newton, McDonald, and Barton counties represents a critical focus area for improving traffic safety. With approximately 38.5% of all serious injuries and fatalities occurring on just ten roadways, prioritizing safety improvements on these corridors can have a significant impact on reducing crash severity (MoDOT, 2023). By combining engineering, enforcement, education, and data-driven strategies, local governments and transportation agencies can move closer to achieving Vision Zero—a future where traffic fatalities and serious injuries are eliminated (FHWA, 2023).

The potential for improvement in these high-risk areas is substantial. Through collaboration among transportation planners, law enforcement, community leaders, and residents, we can create safer streets and a more secure environment for everyone who travels through Jasper, Newton, McDonald, and Barton counties (FHWA, 2023).

References

Federal Highway Administration (FHWA). (2023). *Safety Strategies and Best Practices*. U.S. Department of Transportation.

Missouri Department of Transportation (MoDOT). (2023). *Crash Data Report for Jasper, Newton, McDonald, and Barton Counties*.

National Highway Traffic Safety Administration (NHTSA). (2023). *Traffic Safety Facts and Data Analysis*.

Equity & Demographics

Page | 105

The Southwest Missouri region, comprising Barton, Jasper, Newton, and McDonald counties, presents a unique blend of rural and urban environments. Nestled within the Ozarks' foothills, these counties are characterized by rich agricultural lands, vibrant communities, and a mix of small towns and growing urban centers. Each county contributes to the region's economic diversity, from manufacturing hubs and retail centers to agricultural production and local businesses. This diverse landscape creates a community with strong ties to tradition, yet with growing opportunities for development and modernization.

The region's geographic location is strategic, with major transportation corridors like Interstate 44 and U.S. Highway 71 facilitating movement and commerce. This accessibility supports regional growth by connecting local businesses to broader markets and providing residents with access to services and employment opportunities within and beyond Southwest Missouri. The area's transportation network is integral to its economic vitality, influencing everything from commuting patterns to economic development initiatives.

Purpose of the Report

This demographic report aims to provide a detailed analysis of the population characteristics, socio-economic conditions, and transportation dynamics within Barton, Jasper, Newton, and McDonald counties. By examining key demographic trends, income and employment data, educational attainment, and transportation infrastructure, this report seeks to offer insights that can inform future planning, investment, and community initiatives across the region.

As the region navigates challenges such as economic shifts, population changes, and transportation needs, understanding these factors becomes crucial for effective decision-making. This report serves as a resource for local government officials, community organizations, and stakeholders seeking to enhance the quality of life for residents, promote sustainable growth, and improve connectivity within and between communities.

Key Demographic and Economic Trends

The counties in Southwest Missouri share common demographic and economic trends, but each has distinct characteristics that shape its community profile. Population growth has been steady in urban areas like Joplin, while rural areas continue to face challenges such as declining populations and economic disparities. The median age across the counties reflects a blend of young families and an aging population, which has implications for service delivery, workforce needs, and community engagement.

Economic diversity is a hallmark of the region, with manufacturing, healthcare, retail, and agriculture serving as primary economic drivers. While the median household income varies between counties, there are consistent challenges with poverty rates exceeding state and national averages in some areas. These disparities highlight the need for targeted economic development and workforce training programs to enhance local job opportunities and improve the standard of living for all residents.

Transportation and Connectivity

Transportation plays a pivotal role in the daily lives of residents across Barton, Jasper, Newton, and McDonald counties. Key highways like I-44 and U.S. Highway 71 provide vital links to larger metropolitan areas, including Springfield, Missouri, and Tulsa, Oklahoma. These corridors not only support regional trade and tourism but also influence local commuting patterns and access to services.

While urban centers like Joplin benefit from more extensive transportation options, rural communities often face challenges with limited public transit availability, making private vehicles the primary mode of transportation. Addressing these disparities and improving transportation infrastructure is essential for enhancing mobility, reducing travel times, and supporting economic growth across the region.

This report will explore these demographic and socio-economic factors in greater detail for each county, providing a comprehensive understanding of the current landscape and future opportunities for development in Southwest Missouri. The following sections delve into the individual profiles of Barton, Jasper, Newton, and McDonald counties, focusing on their unique characteristics and shared challenges.

The demographic, socio-economic, and transportation data for Barton, Jasper, Newton, and McDonald counties in Missouri were compiled from various sources, including:

U.S. Census Bureau: Data from the most recent American Community Survey (ACS) for population, age distribution, race, income, and educational attainment across all counties.

Missouri Department of Economic Development: Regional economic reports detailing income levels, poverty rates, and employment statistics for each county.

Bureau of Labor Statistics (BLS): Information on unemployment rates, employment sectors, and workforce trends in Barton, Jasper, Newton, and McDonald counties.

Missouri Department of Transportation (MoDOT): Transportation infrastructure data, including major highways, commuting patterns, and public transit options.

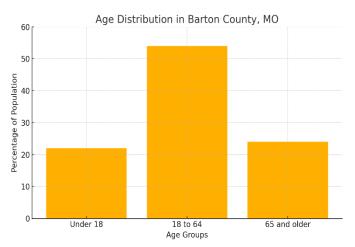
Regional Planning Commissions:

- Harry S Truman Coordinating Council: Planning and demographic analysis for Jasper, Newton, and Barton counties.

- Southwest Missouri Council of Governments (SMCOG): Data relevant to regional planning and socio-economic trends.

County and Local Government Websites: Additional data on community services, local projects, and transportation improvements specific to each county.

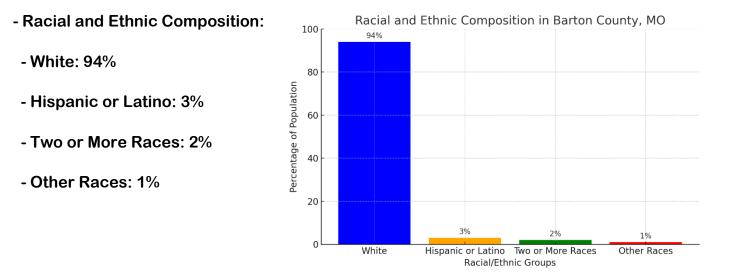
Educational Institutions: Missouri Southern State University and Crowder College reports on regional education levels and workforce development initiatives.


Barton County Demographics and Socio-Economics

Population and Demographics

Barton County, Missouri, is a rural community situated in the northwestern corner of Southwest Missouri. It has a predominantly agricultural base, with smaller towns and a close-knit population. Key demographic data for Barton County includes:

- Total Population: Approximately 11,500 people.

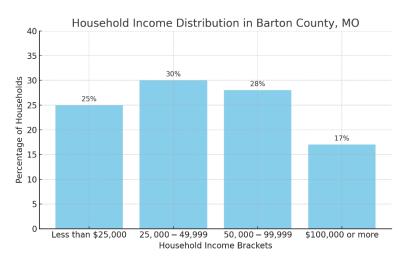

- Median Age: 43 years, indicating an older-than-average population compared to many urban areas, which can have implications for healthcare and social services.

- Under 18: Approximately 22% of the population, highlighting a significant proportion of young families.

- 18 to 64: Around 54%, representing the primary working-age group.

- 65 and older: About 24%, a larger percentage than state and national averages, suggesting a growing need for senior services and healthcare.

- Household Size: The average household size in Barton County is about 2.4 people, with a mix of single-family homes and multi-generational households reflecting the county's traditional rural character.


Page | 108

Social Economics

Barton County's economy is largely shaped by its agricultural roots, local businesses, and a small but stable labor force. The following socio-economic factors illustrate the community's strengths and challenges:

- Median Household Income: Approximately \$42,000, lower than both state and national medians, reflecting the rural economic base and limited high-wage job opportunities.

- Per Capita Income: Around \$22,000, which is indicative of the county's lower income levels per resident compared to more urbanized regions.

- Income Distribution:

- Households earning less than \$25,000: About 25%, highlighting economic challenges for a significant portion of the population.

Households earning between \$25,000 and \$49,999: Approximately 30%.
Households earning \$50,000 to \$99,999: Around 28%.

- Households earning \$100,000 or more:

About 17%, reflecting a smaller proportion of higher-income households.

- Poverty Rate: Approximately 17%, which is above the state average, indicating economic difficulties for many families, including food and housing insecurity.

- Education:

- High school diploma or higher: About 88% of residents have completed high school or obtained a GED.

- Bachelor's degree or higher: Around 15%, suggesting opportunities for improving access to higher education and technical training to diversify the local workforce.

- The focus on vocational education and skills training helps address workforce needs in agriculture and small-scale manufacturing.

- Employment Sectors:

- Agriculture: Dominates the local economy, with many residents engaged in farming and related services.

- Manufacturing: Though smaller in scale compared to nearby urban counties, there are some small manufacturing businesses providing local employment.

- Retail and Services: Includes a mix of small businesses and essential services supporting the community.

- Healthcare and Social Assistance: An important sector due to the county's aging population, with a need for expanded senior care facilities and services.

Transportation Data

Transportation is crucial to Barton County's connectivity, given its rural nature and the need for access to nearby urban centers for goods, services, and employment. The following transportation-related data highlights key aspects of the county's infrastructure and challenges:

- Major Highways:

- U.S. Highway 71: A primary route running north-south through the county, providing access to larger cities like Joplin, Missouri, and Pittsburg, Kansas.

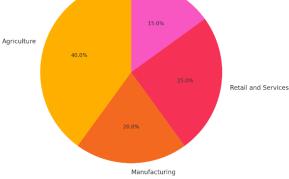
- State Highways: Several state highways, such as Missouri Routes 43 and 126, serve as key connectors within the county and to adjacent regions.

- Commute Patterns:

- The average commute time for Barton County residents is around 25 minutes, reflecting the rural spread and the need to travel for work and services.

- Most residents rely on personal vehicles for commuting, with limited public transportation options, a common challenge in rural Missouri.

- Carpooling: Approximately 10% of the working population carpools, indicating community reliance on shared travel due to economic constraints or limited access to alternative transportation.


- Public Transportation:

- Public transportation is minimal, with demand-responsive services available primarily for seniors and people with disabilities through local community services.

- The lack of fixed-route transit services means many residents depend heavily on personal vehicles for mobility, which can be a barrier for low-income households or those without reliable transportation.

- Transportation Challenges:

- Road Maintenance: As in many rural counties, road maintenance is a priority due to wear from agricultural equipment and the need for safe travel conditions, especially during winter.

Employment Sectors in Barton County, MO

Healthcare and Social Assistance

- Access to Services: The distance to healthcare, educational institutions, and other essential services is a significant factor in the lives of Barton County residents, often requiring trips to larger nearby cities like Joplin or Carthage for specialized services.

- Regional Connectivity: While Barton County benefits from its location along key transportation routes, improving local road quality and safety remains a focus for community leaders.

Summary

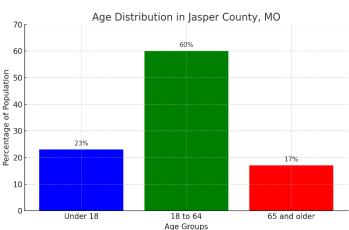
Barton County is a community with deep agricultural roots and a strong sense of local identity. Its demographic profile shows an aging population, moderate economic challenges, and a reliance on traditional industries. Efforts to diversify the economy through education and skills training, combined with targeted improvements in transportation infrastructure, can support a more sustainable future for Barton County residents. Understanding these socio-economic and transportation dynamics is critical for planning initiatives that aim to enhance the quality of life and economic resilience in Barton County.

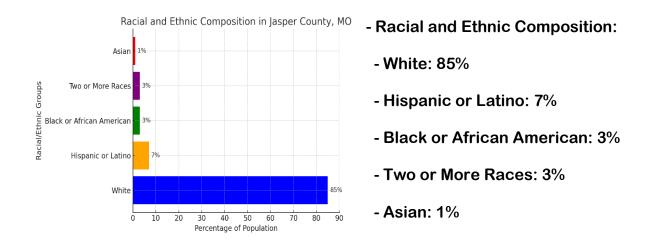
Jasper County Demographics and Socio-Economics

Population and Demographics

Jasper County, home to the regional hub city of Joplin, is the most populous county in the four-county area. It features a mix of urban and rural communities, contributing to diverse population characteristics.

- Total Population: Approximately 124,000 people, with Joplin as the largest urban center.


- Median Age: 38 years, reflecting a balance of young families, working-age adults, and a significant senior population.


- Age Distribution:

- Under 18: Approximately 23%, indicating a robust youth population.

- 18 to 64: Around 60%, representing the primary labor force.

- 65 and older: About 17%, showing a need for age-friendly services and healthcare.

- Household Size: The average household size is about 2.5 people, reflecting both traditional and multi-generational households typical of urban and suburban settings.

Social Economics

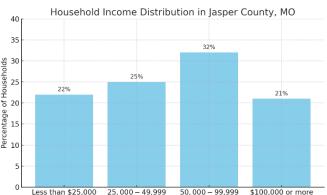
Jasper County's economy is more diversified than its rural neighbors, with healthcare, manufacturing, and retail trade playing key roles. The socio-economic conditions reflect a mix of opportunity and need.

- Median Household Income: Approximately \$47,000, close to the state average, highlighting a balanced economic environment with both higher and lower income brackets.

- Per Capita Income: Around \$24,000, indicating varied earning power within the population.

- Income Distribution:

- Households earning less than \$25,000: About 22%.


- Households earning between \$25,000 and \$49,999: Approximately 25%.

- Households earning \$50,000 to \$99,999: Around 32%.

- Households earning \$100,000 or more: About 21%.

40 35 32% s of Households 25 20 25% 22% 21% entage 15 มี สู่ 10 5 0 Less than \$25,000 25,000 - 49,999 50,000 - 99,999 \$100,000 or more Household Income Brackets


- Poverty Rate: Around 16%, indicating economic disparities, particularly in urban areas like Joplin where access to services and job opportunities varies.

- Education:

- High school diploma or higher: About 88% of residents.

- Bachelor's degree or higher: Around 20%, slightly below the national average, with ongoing efforts to improve higher education access through local institutions like Missouri Southern State University.

- Employment Sectors:

- Healthcare and Social Assistance: Largest sector, reflecting Joplin's role as a regional healthcare center.

- Manufacturing: Key employer, with a variety of products including food production and industrial goods.

- Retail Trade: Significant due to Joplin's position as a shopping hub for the region.

- Education Services: Contributing to local employment through schools and higher education institutions.

Transportation Data

Transportation is a major influence on Jasper County's economic activity and connectivity, with its location along I-44 and US Highway 71 making it a central transit point.

- Major Highways:

- I-44: A key corridor facilitating east-west travel and commerce, connecting to Springfield and beyond.

- US Highway 71: Vital for north-south movement, linking Joplin to Kansas City and Arkansas.

- Route 66: Historic route that enhances tourism and cultural connections in the area.

- Commute Patterns:

- Average commute time: Approximately 20 minutes, benefiting from the county's developed road network.

- Public Transportation: Joplin offers limited fixed-route bus services through the MAPS system, providing mobility for residents without access to personal vehicles.

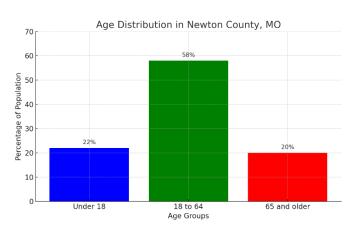
- Carpooling and Ride-Sharing: Moderate participation, especially for workers commuting to nearby rural areas.

- Transportation Challenges:

- Traffic Congestion: Concentrated around Joplin, especially during peak hours.

- Road Maintenance: Ongoing projects to improve road conditions and expand infrastructure to support regional growth.

- Regional Connectivity: Efforts are underway to improve connections to rural communities in the county, enhancing economic integration.


Newton County Demographics and Socio-Economics

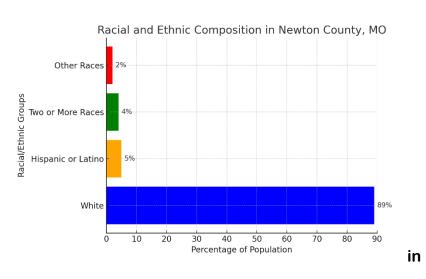
Population and Demographics

Newton County, located south of Jasper County, combines small-town charm with the presence of industrial centers, offering a mix of rural and suburban living.

- Total Population: Approximately 58,000 people.

- Median Age: 39 years, with a mix of families and an aging population.

- Age Distribution:


- Under 18: Approximately 22%.

- 18 to 64: Around 58%.

- 65 and older: About 20%, indicating a need for senior-focused services.

- Racial and Ethnic Composition:
- White: 89%
- Hispanic or Latino: 5%
- Two or More Races: 4%
- Other Races: 2%

- Household Size: Average household size is about 2.6 people, with many families living close-knit communities.

Social Economics

Newton County's economy benefits from its proximity to Joplin, with a strong base in manufacturing, agriculture, and local services.

- Median Household Income: Around \$45,000, reflecting a stable economic base with a mix of higher and lower income levels.

- Per Capita Income: Approximately \$23,000.

- Income Distribution:

- Households earning less than \$25,000: About 24%.

- Households earning between \$25,000 and \$49,999: Approximately 28%

- Households earning \$50,000 to \$99,999: Around 30%.

- Households earning \$100,000 or more: About 18%.

Household Income Distribution in Newton County, MO

- Poverty Rate: Approximately 15%, with challenges in accessing higher-paying job opportunities, particularly in more rural areas.

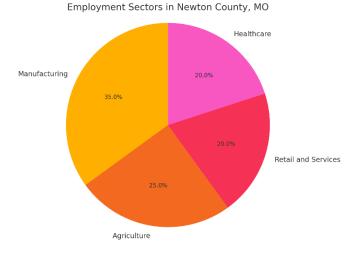
40

35

- Education:

- Employment Sectors:

- High school diploma or higher: 87% of residents.


- Bachelor's degree or higher: 18%, indicating a need for expanded educational programs and workforce training.

- Manufacturing: Significant contributor to the local economy, with companies producing a range of goods.

- Agriculture: Important in rural areas, focusing on crops and livestock.

- Retail and Services: Provides essential goods and services to residents.

- Healthcare: Growing sector, supporting the needs of an aging population.

Transportation Data

Transportation infrastructure is a critical aspect of Newton County's connectivity to the broader region.

- Major Highways:

- I-49: Provides north-south connectivity, crucial for access to larger markets.
- State Highways: Numerous routes facilitate local travel and connect to Joplin.

- Commute Patterns:

- Average commute time: Approximately 22 minutes.

- Public Transportation: Limited, with demand-responsive services available for seniors and people with disabilities.

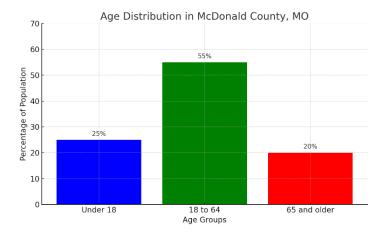
- Vehicle Reliance: High, with most residents using personal vehicles for daily commutes.

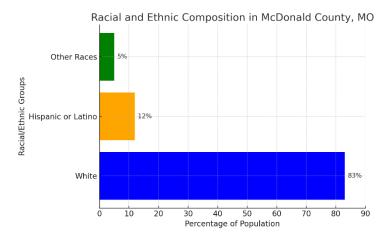
- Transportation Challenges:

- Road Maintenance: A priority for rural areas with heavy agricultural traffic.

- Access to Public Services: Distance to healthcare and other services presents challenges for some residents.

McDonald County Demographics and Socio-Economics


Population and Demographics


McDonald County is a predominantly rural county on the border with Arkansas, known for its agricultural heritage and scenic beauty.

- Total Population: Approximately 23,000 people.

- Median Age: 39 years.

- Age Distribution:
- Under 18: Approximately 25%.
- 18 to 64: Around 55%.
- 65 and older: About 20%.

- Racial and Ethnic Composition:
 - White: 83%
 - Hispanic or Latino: 12%
 - Other Races: 5%

- Household Size: Average household size is about 2.8 people, reflecting larger family sizes typical of rural areas.

Social Economics

McDonald County's economy is closely tied to agriculture, with a focus on poultry farming, as well as small-scale manufacturing.

- Median Household Income: Around \$40,000, below state and national averages.
- Per Capita Income: About \$20,000.
- Income Distribution:

- Households earning less than \$25,000: 27%.

- Households earning between \$25,000 and \$49,999: 32%.

- Households earning \$50,000 to \$99,999: 28%.

- Households earning \$100,000 or more: 13%.

- Poverty Rate: Approximately 20%, indicating economic challenges, particularly among agricultural workers and lower-income families.

- Education:

- High school diploma or higher: 85%.
- Bachelor's degree or higher: 14%, reflecting limited access to higher education.

- Agriculture: Dominant sector, especially poultry production.

- Manufacturing: Smaller-scale production facilities provide local jobs.

- Retail and Services: Limited, with most major shopping done outside the county.

Transportation Data

Transportation is crucial for McDonald County's residents due to its rural nature.

- Major Highways:

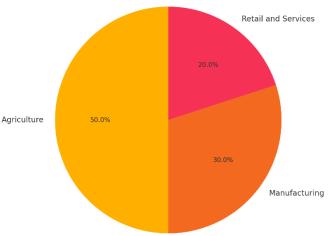
- US Highway 71

: Essential for regional travel and access to Arkansas.

- State Routes: Support local connectivity.

- Commute Patterns:

- Average commute time: 25 minutes.


- Public Transportation: Minimal, making car ownership essential.

- Commuting Outside the County: Common, with many residents traveling to nearby cities for work.

- Transportation Challenges:

- Rural Road Conditions: Ongoing need for improvements.

- Limited Transit Access: A barrier for low-income residents without personal vehicles.

Employment Sectors in McDonald County, MO

Equity in the Southwest Missouri Vision Zero Plan

Achieving the goal of eliminating traffic fatalities and serious injuries across Southwest Missouri requires a strong commitment to equity. Recognizing and addressing the disproportionate impacts of traffic safety issues on vulnerable communities is essential to building a transportation system that works for everyone. The Southwest Missouri Vision Zero Plan integrates equity throughout its framework to ensure that safety improvements benefit all residents, especially those who have historically faced social, economic, and environmental challenges.

This Plan aligns with the Safe System Approach, which emphasizes that human error is inevitable and should not lead to severe injury or death. By focusing on equity, the Plan takes intentional steps to reduce safety risks for individuals and communities that have experienced historical disadvantages, persistent poverty, and social vulnerability. In doing so, the Southwest Missouri Vision Zero Plan aims to create a safer and more inclusive transportation system for all.

Identifying Vulnerable Communities

To ensure equity is prioritized in transportation safety, this Plan employs criteria to identify vulnerable populations and communities that face disproportionate challenges. These criteria include:

- Areas of Persistent Poverty: Defined by the U.S. Department of Transportation (USDOT) as counties or census tracts where 20% or more of the population has lived in poverty over an extended period.

- Historically Disadvantaged Communities: Identified by USDOT as populations and geographic areas systematically denied opportunities to fully participate in economic, social, and civic life.

- Social Vulnerability Index (SVI): Developed by the Centers for Disease Control and Prevention (CDC) and the Agency for Toxic Substances and Disease Registry (ATSDR), the SVI measures how external stresses, such as natural disasters or human-caused events, affect community health.

By using these frameworks, the Plan highlights communities where residents may be more vulnerable to traffic safety issues, ensuring that recommended actions target the greatest need.

Criteria for Defining Vulnerable Populations

To address the needs of vulnerable communities, this Plan focuses on several critical dimensions of disadvantage, including:

1. Transportation Access Disadvantage: Communities where residents face longer travel times and higher transportation costs to access essential services like healthcare, employment, and education.

2. Health Disadvantage: Communities characterized by adverse health outcomes, higher

rates of disability, and greater environmental exposures, such as poor air quality.

3. Environmental Disadvantage: Areas with disproportionately high levels of environmental hazards, such as elevated air pollution and older housing stock that may contain lead-based paint.

4. Economic Disadvantage: Regions with high levels of poverty, unemployment, low educational attainment, and limited local job opportunities.

5. Resilience Disadvantage: Communities particularly vulnerable to the effects of climate change, such as extreme weather events.

6. Equity Disadvantage: Communities where a significant percentage of the population (age 5 and older) speak English "less than well," indicating potential barriers to accessing transportation services and safety information.

Social Vulnerability Factors

In addition to the categories above, the Social Vulnerability Index (SVI) provides insight into additional factors that influence a community's ability to withstand external stresses. These factors include:

- Socioeconomic Status: Residents living below 150% of the poverty line, those without a high school diploma, and households experiencing housing cost burdens or lacking health insurance.

- Household Characteristics: Communities with a higher proportion of residents over 65 years old, under 17 years old, or living with disabilities. Single-parent households and those with limited English proficiency are also more vulnerable.

- Racial and Ethnic Minorities: Populations such as Hispanic or Latino individuals, Black or African Americans, Native Americans, and other racial or ethnic minorities often face systemic challenges that increase their vulnerability to traffic safety risks.

- Housing Type and Transportation: Areas with high concentrations of multi-unit housing, mobile homes, crowded living conditions, lack of vehicle access, and group quarters housing.

Equity in Action

The Southwest Missouri Vision Zero Plan identifies and prioritizes investments in communities that exhibit high levels of disadvantage based on the above criteria. To ensure that these investments effectively improve safety, recommended actions have been developed with equity in mind. This includes making sure that transportation infrastructure improvements, education campaigns, and enforcement strategies are applied in a way that benefits the most vulnerable communities without reinforcing existing disparities.

For instance, special care is taken to ensure that policing and enforcement efforts, which are part of many traffic safety strategies, do not disproportionately affect communities of color or areas of persistent poverty. Over-policing in these communities can lead to unintended consequences, such as increased mistrust of law enforcement and exacerbation of existing social and economic inequalities. The Vision Zero Plan advocates for balanced and fair approaches to enforcement that prioritize safety without contributing to disparities.

Moving Forward with Equity

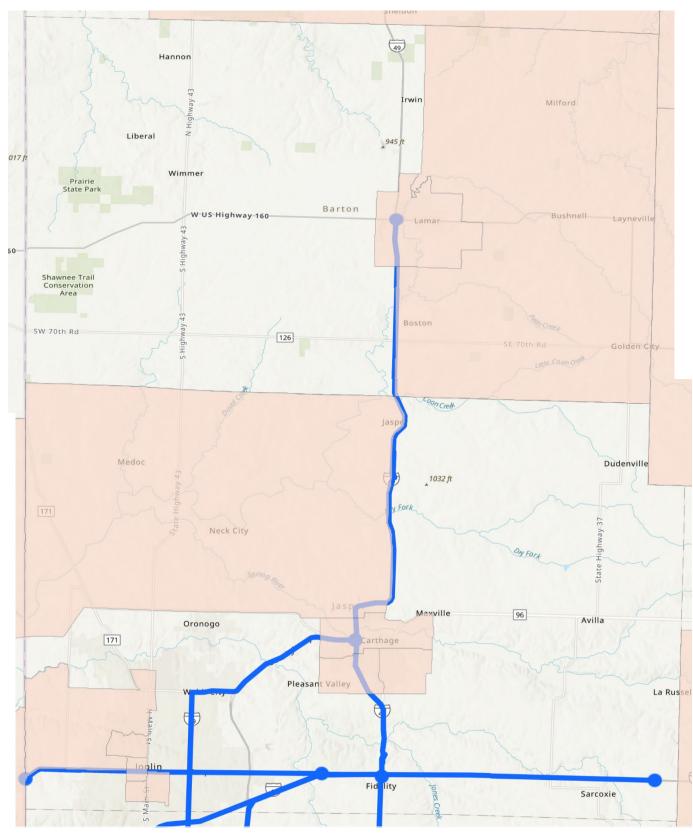
By integrating equity into the Southwest Missouri Vision Zero Plan, the region takes a proactive step toward addressing the root causes of traffic safety disparities. The Plan's recommended actions aim to ensure that all residents, regardless of their background or circumstances, have access to a safe transportation system that supports their mobility and well-being.

Through continued data analysis, community engagement, and partnerships with local organizations, the Plan will remain responsive to the evolving needs of vulnerable communities. By doing so, Southwest Missouri can make meaningful progress toward achieving its Vision Zero goals while promoting equity and inclusion across the region.

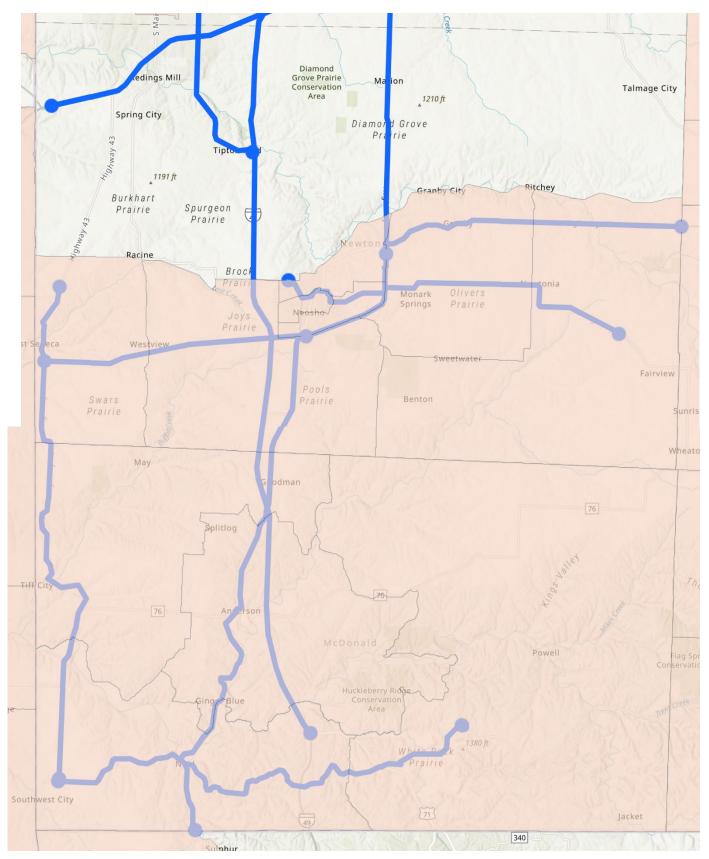
Equity Analysis Overlap and HIN

The maps on the following pages reflect areas where high injury routes intersect with historically disadvantaged communities and areas with persistent poverty by overlaying crash data with demographic and socioeconomic indicators. Here's how these relationships are illustrated:

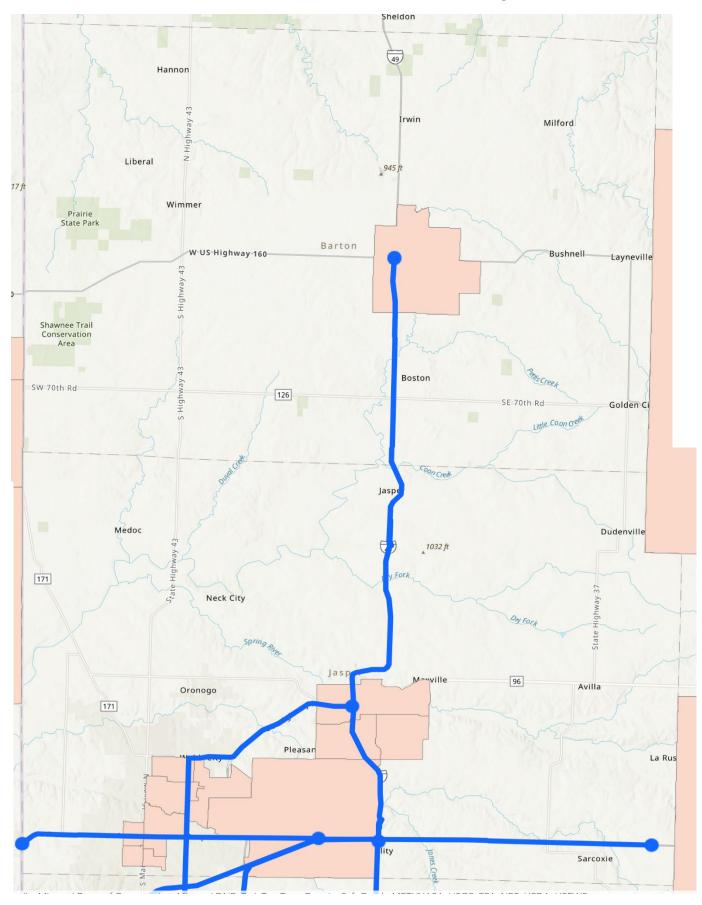
1. High Injury Network (HIN): The maps identify key corridors with a high concentration of severe crashes, such as those leading to fatalities or serious injuries. These routes, which include major highways and busy intersections, are highlighted to prioritize safety interventions.

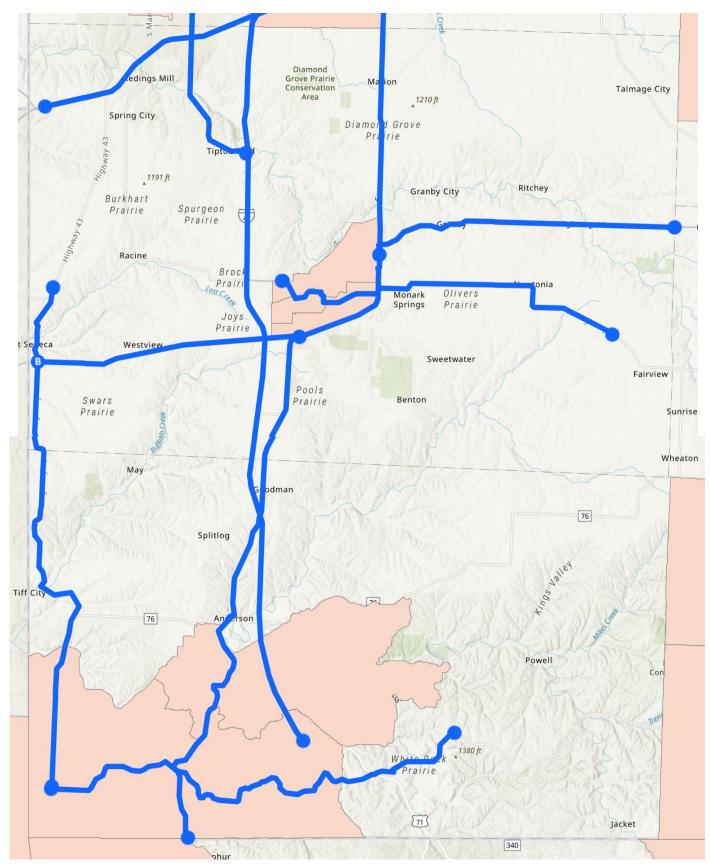

2. Equity Criteria: The plan employs criteria like areas of persistent poverty, defined as regions where at least 20% of the population has lived below the poverty line for an extended period. This helps in pinpointing vulnerable communities that are more likely to suffer from traffic-related issues due to limited access to safe infrastructure.

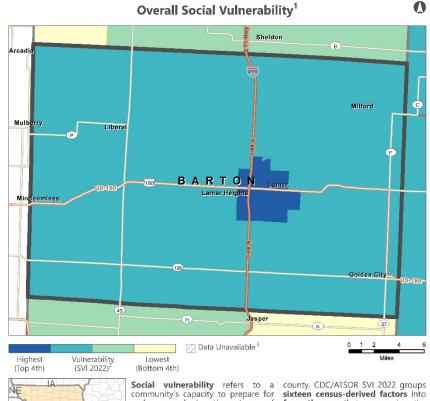
3. Overlay Analysis: By mapping high injury corridors alongside demographic data, the plan identifies intersections between crash-prone areas and communities that are economically disadvantaged or have faced historical marginalization. This allows for targeted investments in safety measures like improved lighting, enhanced pedestrian crossings, and traffic calming in areas with the greatest need.


This integration of data ensures that the recommended safety measures are directed not just at reducing overall crash rates but at addressing disparities in safety outcomes. It aligns with the plan's commitment to equity, ensuring that safety improvements benefit those communities that are most at risk.

Identifying Vulnerable Communities


Historically Disadvantaged Communities


Historically Disadvantaged Communities (cont)


Areas of Persistent Poverty

Areas of Persistent Poverty (cont)

BARTON COUNTY, MISSOURI

and respond to the stress of four themes that summarize the hazardous events ranging from extent to which the area is socially caused threats, such as toxic chemical spills. The CDC/ATSDR Social ΣN

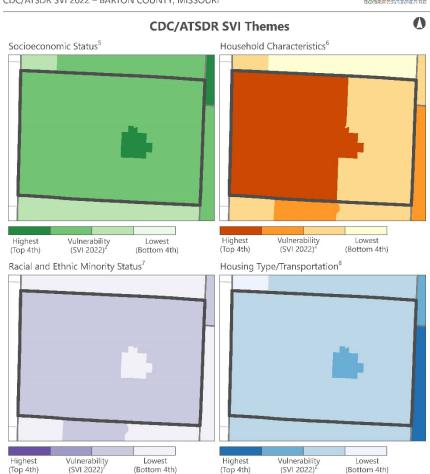
AR

MO

KS

OK

natural disasters, such as tornadoes vulnerable to disaster. The factors or disease outbreaks, to human- include economic data as well as data regarding characteristics, housing, Vulnerability Index (CDC/ATSDR ability, ethnicity, and vehicle access. SVI 2022)⁴ County Map depicts the Overall Social Vulnerability combines social vulnerability of communities, at all the variables to provide a census tract level, within a specified comprehensive assessment.

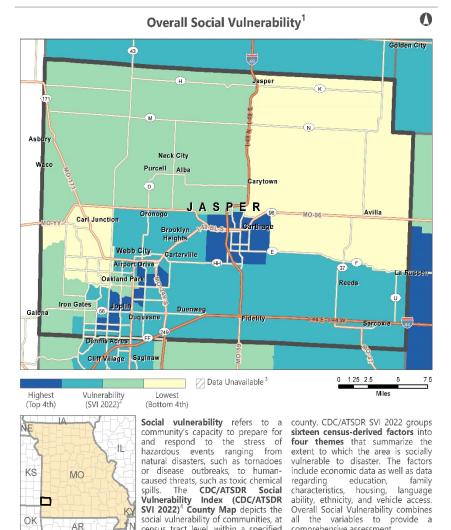

GRASP

family

language

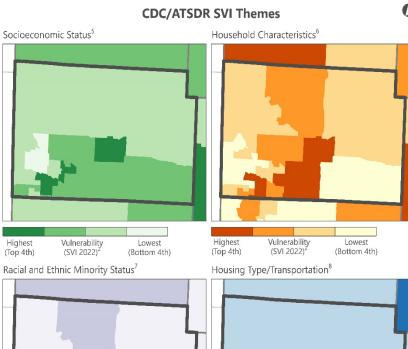
Geospatial Research, Analysis, and Services Program

education,


Data Sources: ¹CDC/ATSDR/GRASP, U.S. Census Bureau, ArcGIS StreetMap Premium. Notes: ¹Overall Social Vulnerability: All 16 variables. ¹One or more variables unavailable at census tract level. ⁴The CDC/ATSDR SVI combines percentile rankings of U.S. Census House house, https://doi.or.ukino.com/sian.Not.HSpanic or Latino, Native Hawaiian and Ubitr Pacific State Anno Printer and Transmission and Packate Net HSpanic or Latino, Not HSpan

CDC/ATSDR SVI web page: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html.

CDC/ATSDR SVI 2022 - BARTON COUNTY, MISSOURI

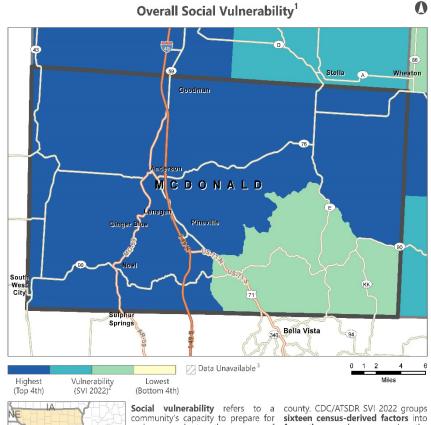

JASPER COUNTY, MISSOURI

census tract level, within a specified comprehensive assessment.

CDC/ATSDR SVI 2022 - JASPER COUNTY, MISSOURI

Vulnerability Vulnerability Highest Lowest Highest Lowest (Top 4th) (SVI 2022)2 (Bottom 4th) (Top 4th) (SVI 2022)2 (Bottom 4th)

Data Sources: ²CDC/ATSDR/GRASP, U.S. Census Bureau, ArcGIS StreetMap Premium,


Highest

Notes: 'Overall Social Vulnerability: All 16 variables, 'One or more variables unavailable at census tract level. 'The CDC/ATSDR SVI combines percentile rankings of U.S. Census American Community Survey (ACS) 2018-2022 variables, for the state, at the census tract level. *Socioeconomic Status: Below 150% Poverty, Unemployed, Housing Costs Burden, No High School Diploma, No Health Insurance. SHousehold Characteristics: Aged 65 and Older, Aged 17 and Younger, Civilian with a Disability, Single-Parent Household, English Language Proficiency, ²Race/Ethnicity, Hispanic or Latino (of any race); Black and African American, Not Hispanic or Latino; American Indian and Alaska Native, Not Hispanic or Latino; Asian, Not Hispanic or Latino; Native Hawaiian and Other Pacific Islander, Not Hispanic or Latino; Two or More Races, Not Hispanic or Latino; Other Races, Not Hispanic or Latino, ⁸Housing Type/Transportation: Multi-Unit Structures, Mobile Homes, Crowding, No Vehicle, Group Quarters, Projection: NAD 1983 StatePlane Missouri Central EIPS 2402

References: Flanagan, B.E., et al. A Social Vulnerability Index for Disaster Management, Journal of Homeland Security and Emergency Management, 2011. 8(1). CDC/ATSDR SVI web page: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html.

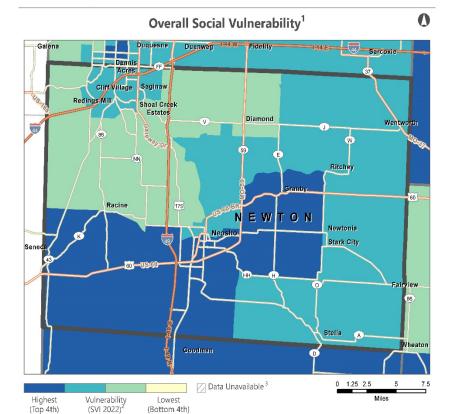
:iii:::::iii

MCDONALD COUNTY, MISSOURI

1L KS MO OK AR

and respond to the stress of four themes that summarize the hazardous events ranging from extent to which the area is socially natural disasters, such as tornadoes vulnerable to disaster. The factors or disease outbreaks, to human- include economic data as well as data caused threats, such as toxic chemical regarding spills. The CDC/ATSDR Social characteristics, housing, language Vulnerability Index (CDC/ATSDR ability, ethnicity, and vehicle access. SVI 2022)⁴ County Map depicts the Overall Social Vulnerability combines social vulnerability of communities, at all the variables to provide a census tract level, within a specified comprehensive assessment.

education, family



CDC/ATSDR SVI 2022 - MCDONALD COUNTY, MISSOURI 0 **CDC/ATSDR SVI Themes** Household Characteristics⁶ Socioeconomic Status⁵ Highest Vulnerability Lowest Highest Vulnerability Lowest (Top 4th) (SVI 2022)2 (Bottom 4th) (SVI 2022)2 (Top 4th) (Bottom 4th) Racial and Ethnic Minority Status⁷ Housing Type/Transportation⁸ Highest Vulnerability Lowest Highest Vulnerability Lowest (Top 4th) (SVI 2022)2 (Top 4th) (SVI 2022) (Bottom 4th) (Bottom 4th) Data Sources: ²CDC/ATSDR/GRASP, U.S. Census Bureau, ArcGIS StreetMap Premium

Mote: "Development of the second seco Burden, No High School Diploma, No Health Insurance. Household Characteristics: Aged 65 and Older, Aged 17 and Younger, Civilian with a Disability, Single-Parent Household, English Language Proficiency. 7 Race/Ethnicity: Hispanic or Latino (of any race); Black and African American, Not Hispanic or Latino; American Indian and Alaska Native, Not Hispanic or Latino; Asian, Not Hispanic or Latino; Native Hawaiian and Other Pacific Islander, Not Hispanic or Latino; Two or More Races, Not Hispanic or Latino; Other Races, Not Hispanic or Latino. ⁶Housing Type/Transportation: Multi-Unit Structures, Mobile Homes, Crowding, No Vehicle, Group Quarters. Projection: NAD 1983 StatePlane Missouri Central FIPS 2402.

References: Flanagan, B.E., et al., A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management, 2011. 8(1). CDC/ATSDR SVI web page; https://www.atsdr.cdc.gov/placeandhealth/svi/index.html.

NEWTON COUNTY, MISSOURI

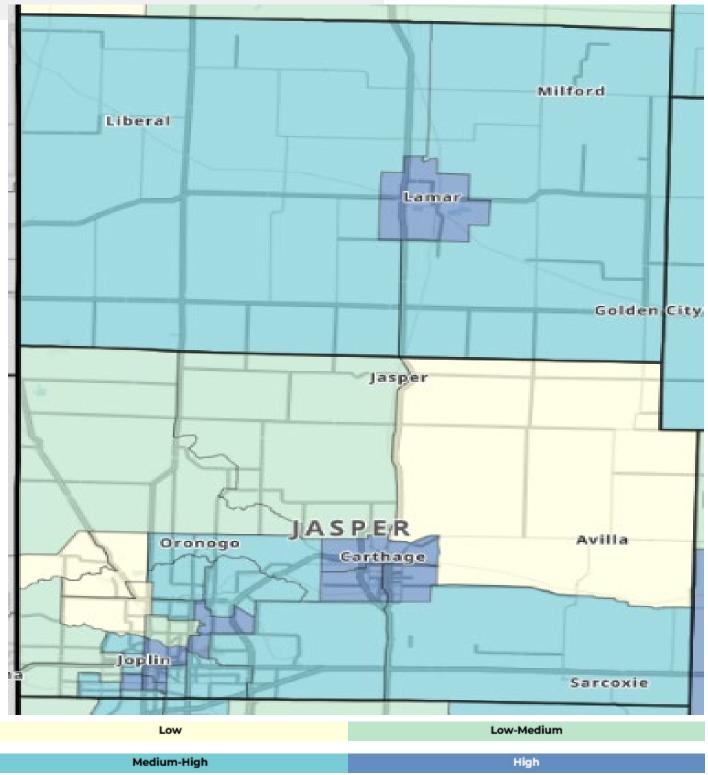
1L KS MO OK AR

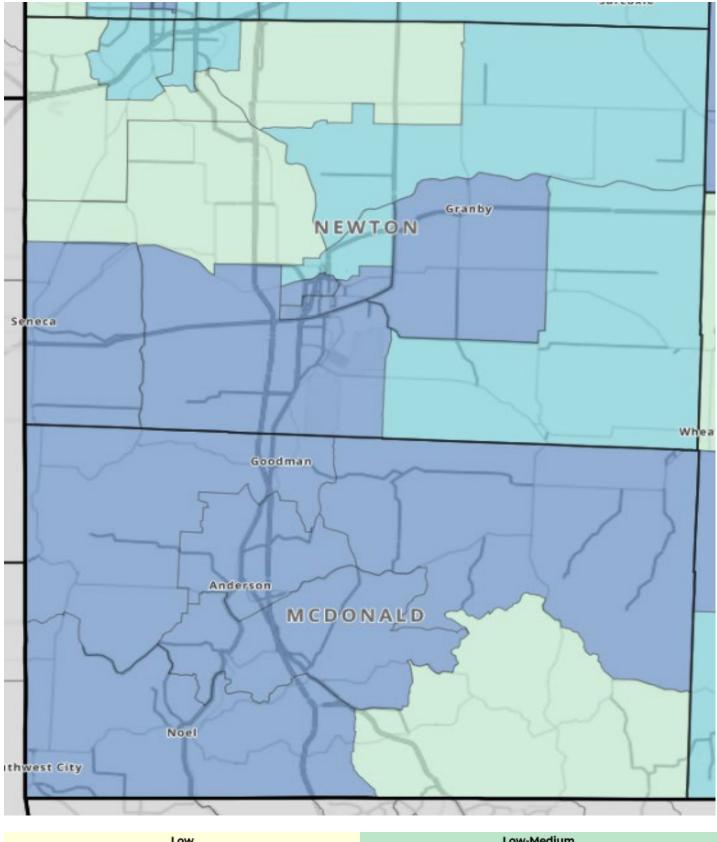
Social vulnerability refers to a county. CDC/ATSDR SVI 2022 groups community's capacity to prepare for sixteen census-derived factors into and respond to the stress of four themes that summarize the hazardous events ranging from extent to which the area is socially natural disasters, such as tornadoes vulnerable to disaster. The factors or disease outbreaks, to human- include economic data as well as data caused threats, such as toxic chemical regarding spills. The CDC/ATSDR Social characteristics, housing, language Vulnerability Index (CDC/ATSDR ability, ethnicity, and vehicle access. SVI 2022)⁴ County Map depicts the Overall Social Vulnerability combines social vulnerability of communities, at all the variables to provide a census tract level, within a specified comprehensive assessment.

GRASP Agency for Toxic Substances and Disease Registry Geospatial Research, Analysis, and Services Program CDC/ATSDR SVI 2022 - NEWTON COUNTY, MISSOURI

CDC/ATSDR SVI Themes Household Characteristics⁶ Socioeconomic Status⁵ Highest Vulnerability Lowest Highest Vulnerability Lowest (SVI 2022)² (Top 4th) (SVI 2022) (Bottom 4th) (Top 4th) (Bottom 4th) Racial and Ethnic Minority Status⁷ Housing Type/Transportation⁸ Highest Highest Vulnerability Vulnerability Lowest Lowest (Top 4th) (SVI 2022) (Bottom 4th) (Top 4th) (SVI 2022)² (Bottom 4th)

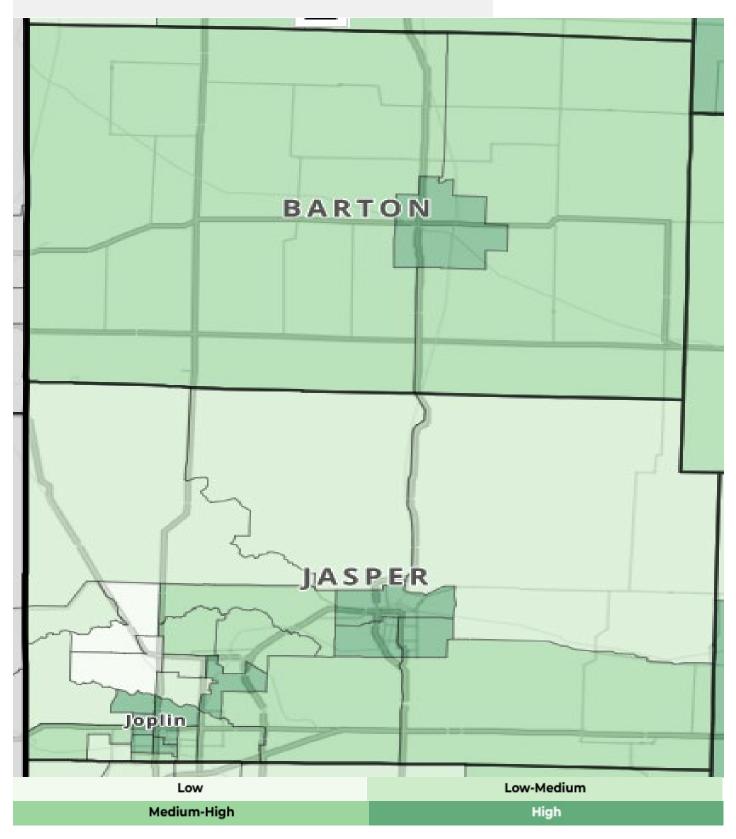
Data Sources: ²CDC/ATSDR/GRASP, U.S. Census Bureau, ArcGIS StreetMap Premium.

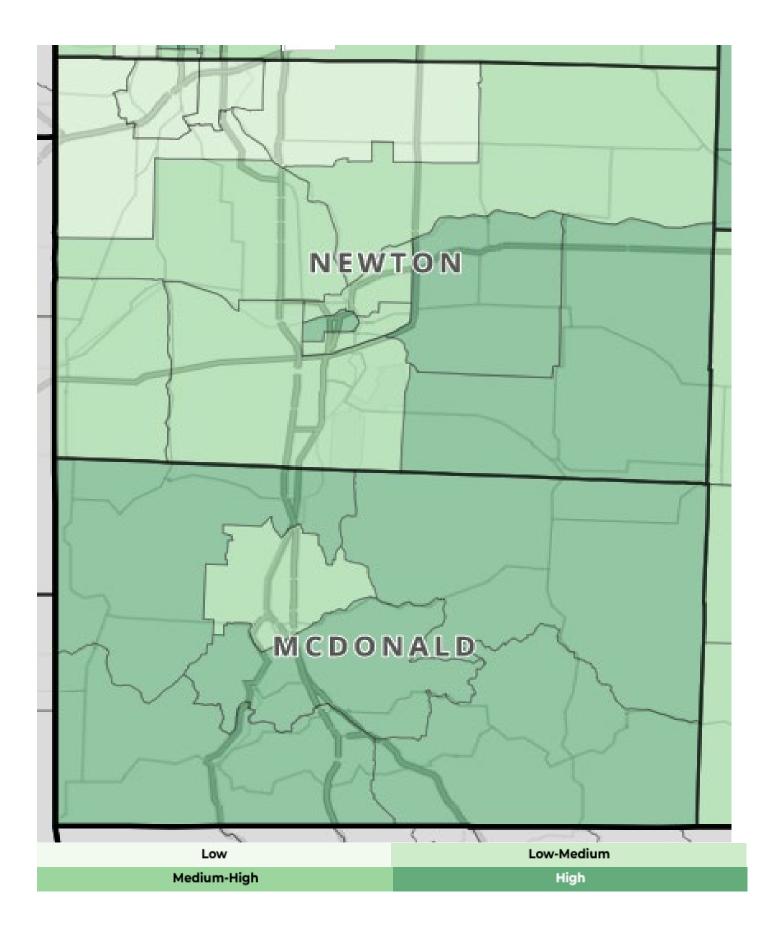

family


education,

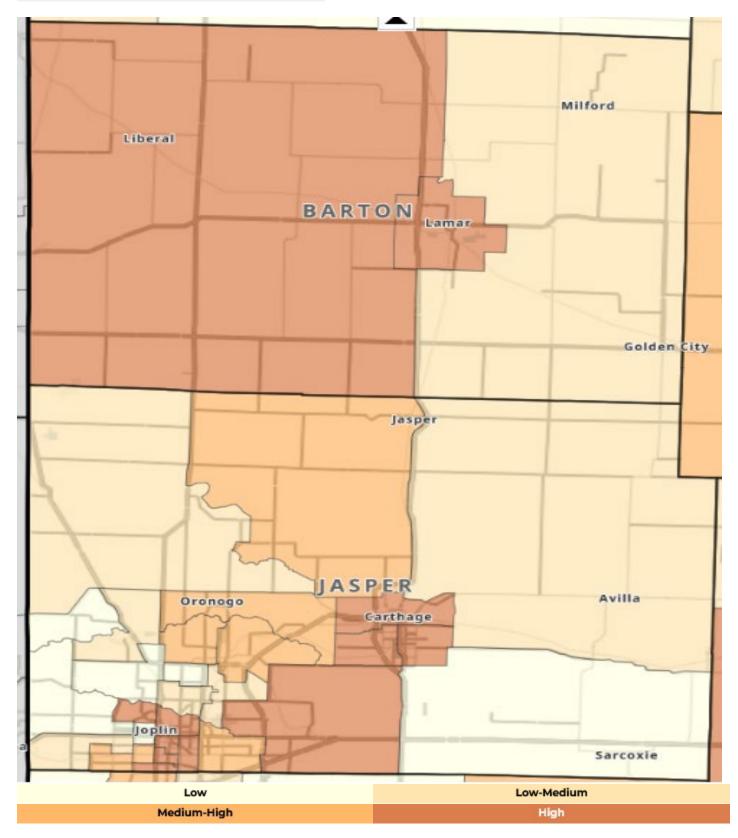
Notes: ¹Overall Social Vulnerability: All 16 variables. ²One or more variables unavailable at census tract level. ⁴The CDC/ATSDR SVI combines percentile rankings of U.S. Census American Community Survey (ACS) 2018-2022 variables, for the state, at the census tract level. *Socioeconomic Status: Below 150% Poverty, Unemployed, Housing Costs Burden, No High School Diploma, No Health Insurance. ⁴Household Characteristics: Aged 65 and Older, Aged 17 and Younger, Civilian with a Disability, Single-Parent Household, English Language Proficiency.⁷Race/Ethnicity: Hispanic or Latino (of any race); Black and African American, Not Hispanic or Latino; American Indian and Alaska Native, Not Hispanic or Latino; Asian, Not Hispanic or Latino; Native Hawaiian and Other Pacific Islander, Not Hispanic or Latino; Two or More Races, Not Hispanic or Latino; Other Races, Not Hispanic or Latino. ⁸Housing Type/Transportation: Multi-Unit Structures, Mobile Homes, Crowding, No Vehicle, Group Quarters. Projection: NAD 1983 StatePlane Missouri Central FIPS 2402.

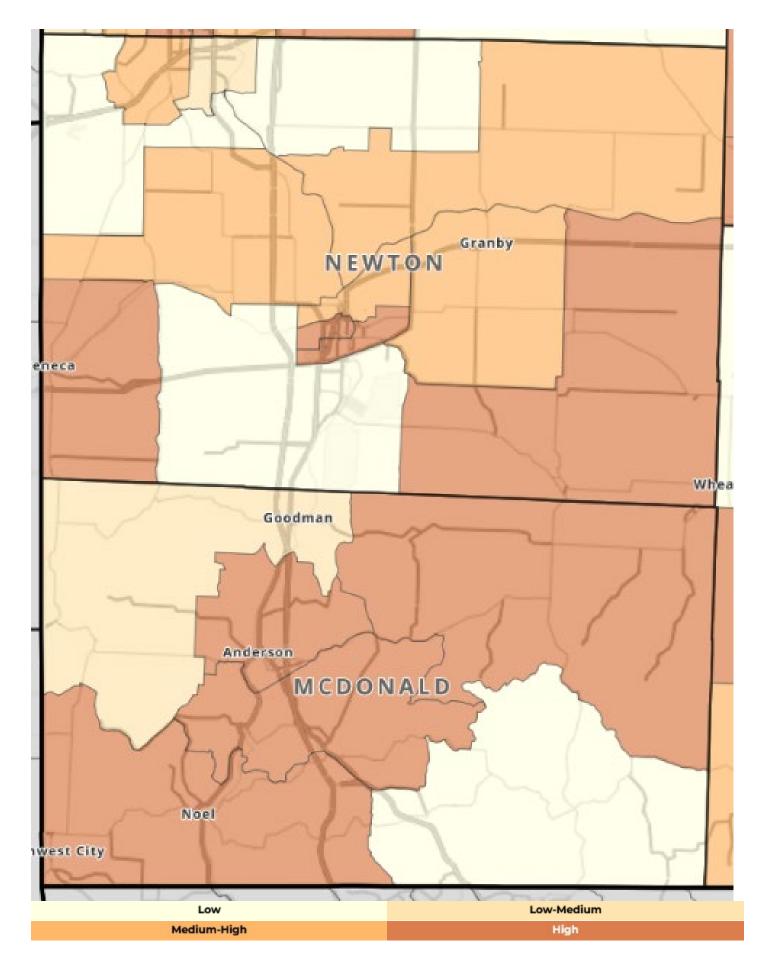
References: Flanagan, B.E., et al., A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management, 2011. 8(1). CDC/ATSDR SVI web page: https://www.atsdr.cdc.gov/placeandhealth/svi/index.html


Overall SVI Missouri: Statewide Comparison

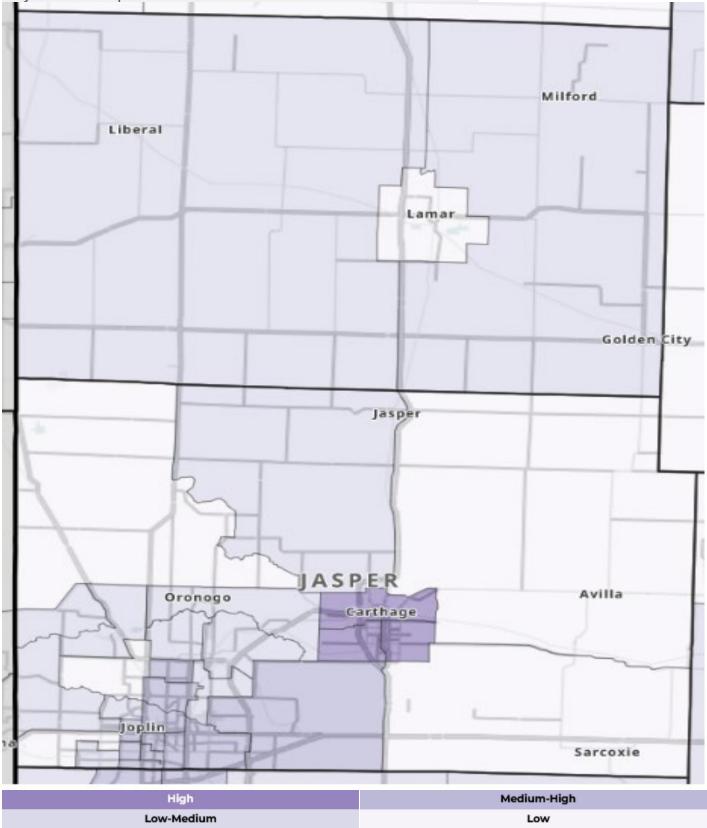


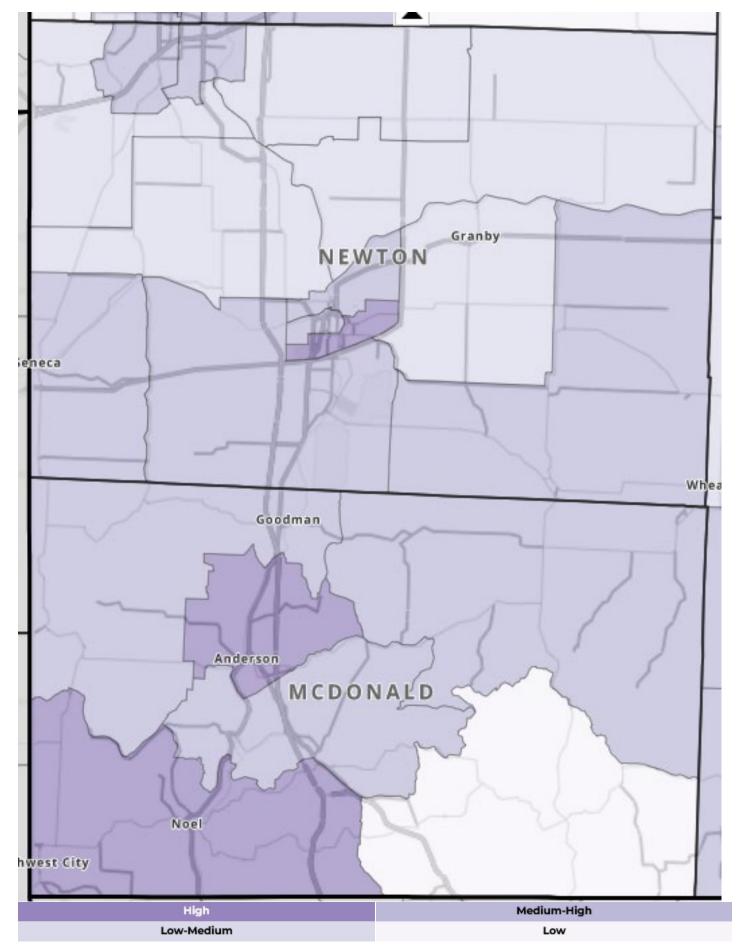
Low	Low-Medium
Medium-High	High


Socioeconomic Status Missouri: Statewide Comparison

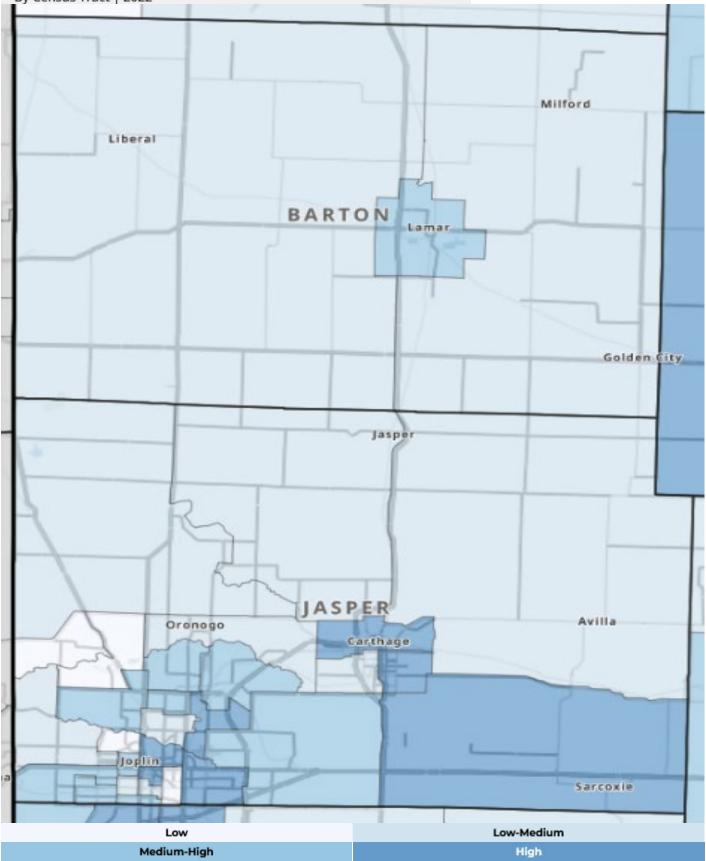


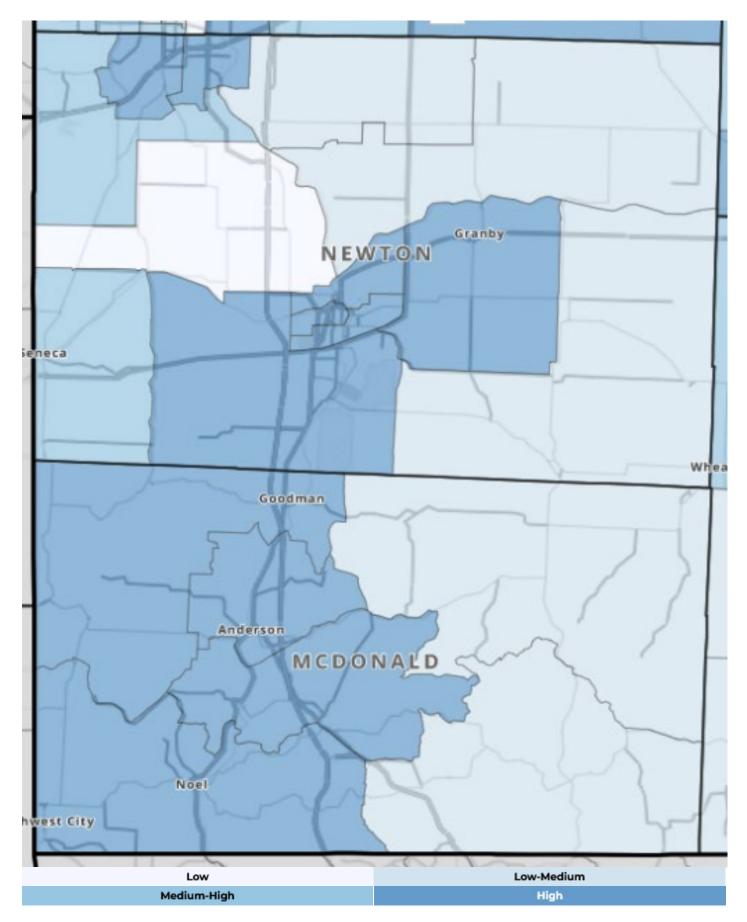
Household Characteristics


Missouri: Statewide Comparison



Racial & Ethnic Minority Status


Missouri: Statewide Comparison



Housing Type & Transportation

Missouri: Statewide Comparison

Community Outreach

Page | 140

Engaging the community in the development of the Vision Zero Action Plan for Southwest Missouri was a critical component of the planning process. Effective outreach ensured that the public, stakeholders, and local officials were informed, involved, and had opportunities to share their experiences and priorities regarding roadway safety. The community engagement process emphasized accessibility, inclusivity, and multiple avenues for input to ensure diverse perspectives were reflected in the final plan.

Steering Committee Formation and Role

The Harry S. Truman Coordinating Council's Technical Advisory Committee (TAC) served as the Steering Committee for the Vision Zero Action Plan. The TAC is a broad and representative body, including mayors, city clerks, public works directors, emergency services personnel, and other key stakeholders from the 67 communities across Jasper, Newton, Barton, and McDonald counties. Their local knowledge and expertise played a crucial role in guiding the plan's development and ensuring that it addressed the unique safety needs of each community.

- September 9, 2024: The Steering Committee convened as the draft plan began to take shape. Discussions focused on identifying high-priority safety issues and preliminary strategies for addressing them.

- November 15, 2024: The Steering Committee met to review and discuss the draft plan, offering feedback on proposed strategies and identifying areas that required further refinement.

These meetings ensured that the perspectives of local leaders were incorporated into each stage of the planning process, fostering a sense of ownership and alignment with community goals.

Public Engagement Strategies

To reach as many residents as possible, a combination of digital and in-person engagement tools was employed throughout the plan's development. The primary objective was to educate the community about the importance of roadway safety and to gather input on their experiences, interests, and concerns. The outreach strategies included the following:

Online Surveys:

A public survey was conducted over several months, allowing residents to share their thoughts on road safety, areas of concern, and priorities for infrastructure improvements. The survey results provided valuable data that helped shape the plan's focus areas.

The analysis of these survey responses provides critical insights into existing challenges, specific areas of concern, and recommended improvements to enhance road safety for all residents and visitors. This narrative synthesizes public input to inform a strategic plan aimed at addressing key safety issues, infrastructure gaps, and potential measures for implementation.

Key Traffic Safety Concerns

Survey responses indicate that residents have significant concerns about traffic safety, with recurring issues highlighted throughout the feedback. These include:

1. Distracted Driving: The most frequently mentioned issue across the region. Respondents expressed frustration over the prevalence of drivers using mobile devices or engaging in activities that divert their attention from the road.

2. Speeding: Excessive speeds were reported as a major safety hazard, particularly in residential areas, near schools, and on state highways such as HH and 171. Speeding contributes to reduced reaction times and the severity of collisions, amplifying the need for targeted enforcement and speed control measures.

3. Poor Road Conditions: The quality of road surfaces, including potholes and narrow lanes, poses challenges to safe travel. Respondents noted that these conditions often lead to vehicle damage and contribute to accidents, especially in areas like rural lettered roads and stretches of I-44.

4. Pedestrian and Cyclist Safety: The absence of sufficient sidewalks and bike lanes was highlighted as a significant concern. Areas such as Neosho Boulevard and intersections within Carthage were cited as particularly unsafe for non-motorized users due to a lack of infrastructure, poor visibility, and high-speed vehicle traffic.

5. Lack of Crosswalks: Respondents identified the need for improved pedestrian crossings in several locations. The lack of marked crosswalks increases the risk for pedestrians, especially in high-traffic areas near schools and community centers.

6. Drunk Driving: Survey participants mentioned drunk driving as a continuing risk, with some expressing concern over repeat offenders and the effectiveness of existing measures to prevent impaired driving incidents.

High-Risk Locations

Certain areas within Southwest Missouri were repeatedly noted as particularly hazardous:

- Chapel and HH Intersection in Carthage: Multiple respondents pointed out this intersection near schools as highly dangerous due to speeding and poor line of sight. It was identified as needing a stoplight or other traffic control to manage congestion and improve safety.

- Highway 59 and FF Intersection: Cited for lacking adequate traffic management, making it difficult to navigate safely.

- Joplin City Limits: Areas within Joplin were mentioned for various safety issues, including the need for off-street bike paths and better pedestrian accommodations.

- Neosho Boulevard: Noted for its complete lack of sidewalks, posing significant danger to pedestrians.

- I-44 and I-49 Cloverleaf: Highlighted for high-speed merging and frequent traffic violations, contributing to accidents.

These locations exemplify areas where targeted interventions could substantially enhance safety and reduce traffic incidents.

Recommendations for Traffic Safety Improvements

Survey participants provided a range of suggestions to improve traffic safety, which can be incorporated into a comprehensive plan:

1. Infrastructure Enhancements:

- Sidewalks and Pedestrian Crossings: Prioritizing the installation of sidewalks in areas such as Neosho Boulevard and near Carthage schools will promote safer walking conditions. Improved pedestrian crossings, particularly at school zones and busy intersections, were also strongly recommended.

- Bike Lanes and Trails: The creation of dedicated bike lanes and off-street paths would enhance safety for cyclists and reduce the risk of accidents involving motor vehicles. Connecting existing trails, such as the proposed link between the Frisco Greenway and Ruby Jack trails, would further support active transportation.

- Road Widening and Maintenance: Addressing Road conditions by widening narrow lanes, repairing potholes, and ensuring consistent maintenance can improve vehicle control and safety. This includes stretches like Highway 96 and various rural roads that were noted for poor conditions.

2. Traffic Control Measures:

- Traffic Calming: The use of speed bumps, roundabouts, and lower speed limits in residential areas and near schools was suggested to mitigate speeding issues.

- Stoplights and Signals: Adding traffic lights at critical intersections, such as Fir and Chapel Road and at points along Highway 59, was proposed to manage congestion and improve driver compliance.

3. Increased Enforcement and Education:

- Law Enforcement: Greater police presence and stricter enforcement of traffic laws, including penalties for speeding and distracted driving, were suggested as effective deterrents. This approach aims to reduce habitual offenses and enhance adherence to traffic regulations.

- Public Awareness Campaigns: Educating drivers on the dangers of distracted and impaired driving, as well as promoting a culture of respect for pedestrian and cyclist rights, could foster safer driving behaviors.

Effectiveness of Safety Measures

Survey respondents provided feedback on the perceived effectiveness of various safety interventions. Notably:

- Increased Police Enforcement: Rated as highly effective by many participants, this measure is seen as a critical step in curbing speeding and distracted driving.

- Improved Pedestrian Crossings: Valued for their potential to enhance safety, especially in school zones and high-foot traffic areas.

- Better Street Lighting: Acknowledged as somewhat to very effective for increasing visibility during night travel and reducing accidents.

- Dedicated Bike Lanes: While opinions varied, bike lanes were viewed as effective by those who cycle regularly, underscoring the need for targeted infrastructure for non-motorized users.

Conclusion

The feedback from residents across Southwest Missouri paints a clear picture of the traffic safety landscape. Addressing core issues such as distracted driving, inadequate infrastructure, speeding, and pedestrian safety is vital. By implementing the proposed recommendations—including infrastructure improvements, traffic control measures, enhanced law enforcement, and public education—the region can move toward safer, more connected, and more efficient transportation for all road users.

Social Media Campaigns:

The plan's development process was communicated through social media channels, providing regular updates and encouraging community feedback. Posts highlighted key safety issues, such as speeding, distracted driving, and pedestrian safety, while directing residents to online surveys and upcoming in-person events.

Public Meetings and Open Houses:

A series of public meetings and open houses were held in various locations across the four counties. These events provided opportunities for residents to review the draft plan, ask questions, and offer input in a face-to-face setting. Event locations were selected to ensure accessibility for residents in both urban and rural areas.

Key Engagement Activities and Outcomes

Engaging the community during the plan's development was essential for building longlasting support for Vision Zero initiatives. The outreach process yielded the following outcomes:

- Broad Participation: Through the survey and public meetings, hundreds of residents shared their perspectives, with particular interest in issues like pedestrian safety, speed control, and safe routes for bicyclists. This input directly informed the plan's focus on high-risk intersections and vulnerable road users.

- Feedback on Draft Proposals: During the November 15, 2024, Steering Committee review and subsequent public meetings, community members provided feedback on proposed countermeasures, such as roundabouts, speed reduction measures, and enhanced pedestrian crossings. This input helped refine the plan's strategies to ensure they align with local needs and priorities.

- Enhanced Awareness of Road Safety: The outreach efforts emphasized the importance of roadway safety and the community's role in achieving Vision Zero. This was reflected in the high level of engagement seen during both online and in-person events, as residents expressed their support for a safer transportation environment in Southwest Missouri.

Accessibility and Inclusivity in Engagement

A core principle of the outreach strategy was ensuring that all community members had opportunities to participate, regardless of their location or technological access. Efforts included:

- Advanced Notice for Events: Public meetings and online feedback opportunities were advertised well in advance through social media, local newspapers, and community bulletin boards to maximize participation.

- Digital Accessibility: Online survey tools were designed to be mobile-friendly and accessible to people with disabilities, ensuring that everyone could contribute their thoughts and opinions.

- Geographic Representation: In-person events were strategically scheduled across the four counties to provide accessibility for residents in urban centers as well as those in rural communities, ensuring that input came from a diverse cross-section of the population.

Conclusion

The Vision Zero Action Plan's community outreach process was designed to be thorough and inclusive, ensuring that the voices of Southwest Missouri's residents were heard throughout the planning stages. By utilizing a mix of digital tools, in-person events, and the guidance of the Steering Committee, the process gathered meaningful input that helped shape a plan truly reflective of the region's needs and priorities. This community-driven approach not only strengthened the plan but also laid the groundwork for continued collaboration and support as the region moves forward with its vision of zero traffic fatalities and serious injuries by 2040.

Goals & Objectives

Goal 1: Improve Roadway Safety

analysis.

Action Item: Prioritize High-Crash Location Repairs and Install Rumble Strips on High-Speed Rural Roads Phase 1 (Years 1-3): High-Priority Areas (25 miles) Tasks **Milestones** Challenges **Key Stakeholders** Conduct a detailed crash analysis to identify highrisk locations where repairs and modifications are most needed. **Missouri Department** Work with local **Complete repairs** communities, including of Transportation and modifications **Disruptions to local** farmers, truckers, and (MoDOT, local county on 10 miles of traffic and farm residents, to gather commissions and feedback on specific identified highequipment during agricultural concerns regarding road priority locations by construction. associations will play repairs and year 2. **Seasonal weather** modifications. critical roles in delays that may supporting the **Finish remaining 15** affect construction **Coordinate with MoDOT** project's alignment to identify and install miles by year 3. and installation with local needs and rumble strips in areas schedules. concerns. that currently lack them but are prone to off-road or head-on collisions. Track repair and rumble strip installation progress monthly, adjusting as needed based on any encountered challenges. Phase 2 (Years 4-5): Lower-Priority Areas (25 miles) Review the impact of repairs and rumble strips from Phase 1 using crash data from Managing repair and the past three years. installation work MoDOT, local **Complete repairs** Modify plans and add and rumble strip during high-traffic business owners, and locations as needed, emergency response installations on 10 times (e.g., harvest based on feedback and season). Balancing miles of the teams are essential effectiveness data. to remaining priority **budget limitations** for evaluating safety ensure continued safety areas in year 4. with the scale of improvements and improvements. Finish the last 15 needed offering feedback on Begin repairs, miles in year 5. modifications and effectiveness. modifications, and installations. additional rumble strip installations on lowerpriority yet high-risk locations identified in the

Goal 2: Enhance Sa	afety for Vulnerable	Road Users	
Action Item: Develop Prote	ected Bike Lanes		
Phase 1 (Years 1-4): Comp	lete 5 Miles in Urban Cente	rs	
Tasks	Milestones	Challenges	Key Stakeholders
Identify high traffic areas for cyclists in Joplin and other urban centers through surveys and traffic studies.			
Design bike lanes that maximize safety, such as buffered bike lanes separated by physical barriers.	Complete 2 miles by Year 2, 3 more miles	Balancing space for bike lanes with existing parking	City councils, local cycling advocacy
Conduct public hearings to gather feedback from cyclists, motorists, and local business owners.	by the end of Year 4.	needs, securing continuous funding.	groups, small business owners.
Begin construction on the first mile by the end of Year 1, with 2 additional miles each year.			
Phase 2 (Years 5-8): Expar	nd to Rural Areas with Ident	ified Cycling Routes	I
Map out rural roads frequented by cyclists, considering connections between communities, parks, and scenic routes.			
Designate and build bike lanes on these routes, ensuring they meet safety standards for higher speed rural roads.	Complete 2 miles each year, aiming for a total of 5 miles by the end of Year 8.	Ensuring regular maintenance of bike lanes on rural roads, adapting designs to varying terrain.	Tourism boards, MoDOT, rural community leaders.
Partner with tourism boards to promote new cycling routes and attract recreational cyclists.			

Goal 3: Promote Sp	beed Management		
Action Item: Traffic Calmir	ng Measures		
Phase 1 (Years 1-2): Targe	et Neighborhoods with Spee	ed Related Incidents	
Tasks	Milestones	Challenges	Key Stakeholders
Use crash and traffic speed data to identify residential areas with frequent speed related incidents.		Addressing	
Hold community meetings to gather input on preferred traffic calming methods (e.g., speed bumps, curb extensions).	Implement measures in at least three neighborhoods by the end of Year 2.	community concerns about changes to traffic patterns, ensuring minimal disruption to emergency vehicle routes.	Neighborhood associations, local law enforcement, emergency services.
Pilot installation of speed bumps and signage in the top three identified neighborhoods.		roules.	
Phase 2 (Years 3-5): Expan	nd to Additional Communitie	es	I
Review data from pilot neighborhoods to measure the effectiveness of installed measures (e.g., reduced average speeds).	Implement		
Adjust designs based on pilot feedback and expand to five more neighborhoods.	measures in all targeted neighborhoods by the end of Year 5.	Managing community expectations, coordinating with school bus routes.	School districts, local community leaders, public works departments.
Partner with local schools to include speed awareness campaigns for students and parents.			

G	ioal	4: 	Enha	ance	e Eme	rgency	Response for PostCrash Care	

Action Item: Equip Rural Fire and Rescue Teams

Phase 1 (Years 1-2): Equip 50% of Rural Teams

Phase T (Tears 1-2). Equip			
Tasks	Milestones	Challenges	Key Stakeholders
Conduct an inventory of current equipment levels for rural fire and rescue teams.			Rural fire
Identify critical equipment needs such as defibrillators, trauma kits, and advanced life support gear.	Equip 25% of teams by the end of Year 1, another 25% by the end of Year 2.	Budget constraints, maintaining equipment with limited local resources.	departments, local government officials, community health organizations.
Secure funding through state EMS grants and community fundraisers			
Phase 2 (Years 3-5): Equip	Remaining Teams		
Expand training programs to include advanced trauma care and crash scene management.		Scheduling	
Develop a maintenance plan for equipment to ensure longevity and reliability.	Equip all remaining teams by Year 4, conduct joint exercises by Year 5.	coordination between volunteer teams and hospitals, ensuring compliance with training	Regional hospitals, state EMS coordinators, rural fire chiefs
Work with nearby hospitals to organize joint training exercises and mock crash response scenarios.		standards.	

Summary and Expected Outcomes

The implementation of these goals are structured to allow for flexibility, adapting to new data and community feedback while maintaining a steady focus on the broader vision of reducing traffic-related fatalities and injuries. Each step, from constructing roundabouts to equipping rural emergency services, contributes to a safer, more connected, and resilient community over the next decade.

Measuring the effectiveness

Measuring the effectiveness of the transportation and safety projects outlined in the plan involves a mix of quantitative and qualitative metrics. These measurements help to determine whether the projects achieve their intended outcomes, such as reducing accidents, improving safety, and enhancing overall mobility. Below is an outline of how effectiveness can be measured across various goals and objectives:

1. Reduction in Traffic Accidents and Fatalities

- Metric: Number of traffic fatalities, serious injuries, and total crashes.

- Method: Use data from the Missouri Department of Transportation (MoDOT) and local law enforcement records to track trends before and after project implementation.

- Time Frame: Assess data annually to identify trends and adjust strategies.

- Target: A 20% reduction in traffic fatalities and serious injuries over ten years.

- Effectiveness Indicator: A significant downward trend in crash rates at locations where interventions (e.g., roundabouts, median barriers) were implemented would indicate success.

2. Improved Road Safety for Vulnerable Road Users

- Metric: Number of pedestrian and cyclist injuries and fatalities.

- Method: Analyze accident reports involving pedestrians and cyclists, focusing on areas where bike lanes or pedestrian crossings have been installed.

- Time Frame: Review data semi-annually, with specific assessments after key phases of construction (e.g., new bike lanes).

- Target: A 30% reduction in pedestrian and cyclist injuries over ten years.

- Effectiveness Indicator: Reduced incidents at newly installed pedestrian crossings and bike lanes indicate that the infrastructure is working.

3. Speed Reduction in Residential Areas

- Metric: Average vehicle speeds in targeted neighborhoods and school zones.

- Method: Use radar speed surveys and data from automated speed enforcement systems.

- Time Frame: Measure before and after the installation of traffic calming measures (e.g., speed bumps, roundabouts), then annually thereafter.

- Target: A decrease of 5-10 mph in average speeds in targeted areas.

- Effectiveness Indicator: A consistent reduction in speed after the installation of traffic calming measures would signal effectiveness in making streets safer for pedestrians and local residents.

4. Enhanced Emergency Response Times

- Metric: Average response time for emergency services to crash scenes, especially in rural areas.

- Method: Use dispatch and response records from local fire and EMS services to track response times over time.

- Time Frame: Evaluate quarterly and after the implementation of new equipment or training.

- Target: A 25% reduction in response times to crash scenes over ten years.

- Effectiveness Indicator: Reduced response times after training programs and the provision of new equipment would indicate improved emergency readiness.

5. Community Satisfaction and Awareness

- Metric: Level of satisfaction and awareness among residents regarding new safety measures.

- Method: Conduct community surveys and feedback sessions to gather input on newly installed infrastructure and programs.

- Time Frame: Annually, and after the completion of major projects (e.g., new roundabouts or bike lanes).

- Target: Positive feedback from 75% or more of survey respondents regarding improved safety and infrastructure.

- Effectiveness Indicator: High levels of satisfaction in areas with new bike lanes or roundabouts would show that the community feels safer and more supported.

6. Usage Rates of New Infrastructure

- Metric: Usage rates of new bike lanes, pedestrian crossings, and public transportation options.

- Method: Install counters or conduct manual counts to measure the number of cyclists, pedestrians, and vehicles using new infrastructure.

- Time Frame: Monitor monthly, with seasonal adjustments to account for weather variations.

- Target: An increase in pedestrian and bicycle traffic of 20% in areas with new facilities.

- Effectiveness Indicator: Higher usage rates of new bike lanes or pedestrian crossings suggest that residents find these improvements valuable and are using them.

7. Return on Investment (ROI)

- Metric: Cost savings related to reduced accidents, healthcare costs, and emergency response.

- Method: Analyze data on reduced crash-related medical expenses, reduced strain on emergency services, and potential economic benefits of smoother traffic flow.

- Time Frame: Assess every two years after the completion of major infrastructure projects.

- Target: Positive ROI within five years, with savings from reduced crash-related expenses exceeding the investment in safety measures.

- Effectiveness Indicator: If the economic benefits (e.g., lower medical costs, fewer emergency responses) outweigh the costs of installation, the projects can be deemed financially effective.

8. Compliance with Speed Limits and Traffic Laws

- Metric: Rate of compliance with new speed limits and other safety regulations.

- Method: Monitor data from speed cameras and police reports to track violations in areas with adjusted speed limits.

- Time Frame: Monitor quarterly, with special focus during the first year after changes are implemented.

- Target: A 50% reduction in speeding violations in targeted areas.

- Effectiveness Indicator: Fewer violations indicate that drivers are adjusting their behavior in response to speed management strategies.

9. Training and Readiness of Emergency Responders

- Metric: Number of emergency responders trained and their performance in simulated crash response scenarios.

- Method: Track attendance and certification in training programs, and conduct mock exercises to assess readiness.

- Time Frame: Evaluate annually, with specific reviews after each training session.

- Target: 90% of rural emergency responders trained in advanced trauma care by Year 5.

- Effectiveness Indicator: Successful completion of mock crash response scenarios within target response times would indicate improved emergency response capability.

10. Long-Term Impact on Quality of Life

- Metric: Quality of life indicators, such as community health outcomes, ease of transportation, and overall safety perceptions.

- Method: Use surveys, public health data, and community feedback to assess overall improvements.

- Time Frame: Review every 2-3 years, with a major review at the end of Year 10.

- Target: Improved quality of life as measured by higher community satisfaction rates and better health outcomes.

- Effectiveness Indicator: Improvements in community health metrics and higher satisfaction scores in surveys would suggest the long-term benefits of the safety initiatives.

These metrics provide a comprehensive approach to measuring the effectiveness of transportation and safety projects, ensuring that they achieve their intended goals and provide tangible benefits to the community. The use of both quantitative data (such as

accident rates and speed data) and qualitative feedback (such as community satisfaction) ensures a well-rounded assessment, allowing for adjustments and refinements as the projects progress.

Involving community stakeholders

Involving community stakeholders is critical to the success of transportation and safety projects. It ensures that the projects reflect the needs and priorities of the people they are intended to benefit and helps build support and engagement. Below are strategies for engaging various community stakeholders throughout the planning, implementation, and evaluation phases of these projects:

1. Host Community Meetings and Public Hearings

- Purpose: Gather input, address concerns, and share information about upcoming projects.

- How to Do It:

- Hold regular meetings in accessible locations like town halls, community centers, or schools.

- Provide both in-person and virtual meeting options to reach a broader audience.

- Use these meetings to present data on traffic safety, project plans, and timelines.

- Allow time for residents to ask questions, offer suggestions, and express concerns.

- Example: Before implementing new bike lanes or traffic calming measures, host meetings with cyclists, parents, and business owners to discuss design preferences and potential impacts.

2. Create a Stakeholder Advisory Committee

- Purpose: Involve community representatives in decision-making and provide ongoing feedback.

- How to Do It:

- Form an advisory committee with representatives from different stakeholder groups, including:

- Local business owners.

- School administrators.

- Healthcare providers.

- Representatives from cycling and pedestrian advocacy groups.

- Emergency responders and law enforcement.

- Hold monthly or quarterly meetings to review progress, address challenges, and gather feedback on project adjustments.

- Example: A committee could provide input on the prioritization of road safety projects and help communicate information back to their respective networks.

3. Use Surveys and Focus Groups

- Purpose: Understand community needs, preferences, and concerns in a structured way. - How to Do It:

- Distribute surveys through online platforms, local newspapers, and community organizations.

- Use focus groups to explore specific issues in more depth, such as the safety needs of senior citizens or the commuting challenges of low-income families.

- Analyze the survey data to identify trends and common concerns, and use these insights to adjust project plans.

- Example: Use a survey to determine which intersections residents perceive as the most dangerous and where they would prioritize new pedestrian crossings.

4. Partner with Local Schools and Parent-Teacher Associations (PTAs)

- Purpose: Engage parents and students, particularly when planning improvements near schools.

- How to Do It:

- Work with schools to host workshops on pedestrian and cycling safety.

- Involve PTAs in planning traffic calming measures around school zones, such as speed limit adjustments or crossing guards.

- Encourage schools to distribute safety information to families, including maps of safe walking and biking routes.

- Example: Partner with a local school district to launch a "Safe Routes to School" program, encouraging walking and biking to school while identifying areas needing infrastructure improvements.

5. Collaborate with Local Businesses and Chambers of Commerce

- Purpose: Ensure that transportation changes benefit local economic activities and do not negatively impact businesses.

- How to Do It:

- Organize roundtable discussions with local business owners to discuss how projects like new bike lanes or reduced speed limits may impact business traffic.

- Work with Chambers of Commerce to create promotional materials highlighting new improvements that make the community more attractive to visitors and shoppers.

- Involve businesses in sponsoring community events or improvements, such as contributing to the cost of installing benches along new pedestrian pathways.

- Example: Engage a local retail association in a campaign promoting the benefits of improved pedestrian safety to attract more foot traffic to shopping districts.

6. Engage Nonprofits and Advocacy Groups

- Purpose: Leverage the expertise and networks of groups focused on transportation, health, and community development.

- How to Do It:

- Partner with local health organizations to promote the benefits of active transportation (walking and biking).

- Work with cycling advocacy groups to design safe bike routes and promote new infrastructure to the community.

- Collaborate with social service agencies to understand the transportation needs of lowincome residents and people with disabilities.

- Example: Work with a nonprofit that focuses on senior health to design age-friendly crosswalks and share information about the new safety features with older residents.

7. Implement a "Community Ambassadors" Program

- Purpose: Use trusted community members to build awareness and support for projects. - How to Do It:

- Recruit respected community leaders, such as neighborhood association presidents, faith-based leaders, or active residents.

- Train them on the goals and details of the project so they can act as liaisons between the project team and the community.

- Provide materials like brochures or presentations that ambassadors can use in their own community meetings.

- Example: Ambassadors can help spread information about new speed management initiatives and encourage residents to follow new speed limits.

8. Use Social Media and Online Engagement

- Purpose: Reach a broad audience quickly and engage with community members who may not attend in-person events.

- How to Do It:

- Create social media pages dedicated to transportation and safety projects, providing updates and answering questions.

- Host live Q&A sessions on platforms like Facebook or Instagram to engage directly with residents.

- Share videos that demonstrate how new infrastructure works (e.g., how to use a roundabout safely).

- Example: Use Instagram Stories to provide weekly updates on construction progress for new pedestrian pathways or bike lanes.

9. Organize Community Walks, Bike Rides, and Tours

- Purpose: Give residents firsthand experience with new infrastructure and gather real-time feedback.

- How to Do It:

- Host events like "Walk with the Mayor" or "Bike with the Chief of Police" to explore new or proposed improvements.

- Use these events to demonstrate how new crossings or bike lanes will function.

- Encourage participants to provide feedback on how these changes could be improved or expanded.

- Example: After installing new bike lanes, host a community bike ride to celebrate the opening and gather feedback on the rideability and safety of the new lanes.

10. Offer Public Comment Periods and Feedback Boxes

- Purpose: Provide a formal channel for residents to express their thoughts and ideas.

- How to Do It:

- Set up feedback boxes at community centers, libraries, and municipal buildings.

- Open an online portal where residents can submit comments and suggestions about ongoing projects.

- Review feedback periodically and incorporate suggestions where feasible.

- Example: Use the feedback collected to adjust the design of a roundabout based on concerns about its size or the visibility of signage.

11. Host Demonstration Projects and Temporary Installations

- Purpose: Test out potential improvements and gather feedback before making permanent changes.

- How to Do It:

- Use temporary materials like cones, paint, or planters to create a mock-up of a new pedestrian crossing or bike lane.

- Host an open house during the demonstration period, where residents can visit, experience the changes, and provide feedback.

- Example: Set up a temporary bike lane along a busy corridor for one month, then survey cyclists and drivers about its impact.

12. Regularly Publish Progress Reports and Updates

- Purpose: Maintain transparency and keep the community informed about the progress and impact of the projects.

- How to Do It:

- Release quarterly reports through local newspapers, social media, and the city's website.

- Include data on changes in traffic safety, construction timelines, and next steps.

- Use newsletters to highlight community success stories and share how residents' feedback has influenced the projects.

- Example: Publish a report after each phase of construction showing how community feedback has been incorporated and summarizing progress toward safety goals.

Benefits of Community Involvement

- Increased Trust: Involving community stakeholders builds trust between residents and local governments, reducing opposition to new projects.

- Better Outcomes: By listening to those who will use the new infrastructure, projects can be tailored to better meet actual needs.

- Sustained Engagement: A community that feels heard is more likely to continue engaging in future planning efforts, ensuring long-term success.

These strategies ensure that community members have a voice in transportation and safety projects, creating a sense of ownership and fostering a safer, more connected environment for all.

Funding

Funding for transportation safety projects can come from various federal, state, local, and private sources. Each source often has its own requirements and focus areas, making it essential to align project goals with the appropriate funding opportunities. Here is an overview of potential funding sources for the proposed transportation and safety projects in Southwest Missouri:

1. Federal Grants and Programs

- Infrastructure Investment and Jobs Act (IIJA)

- Description: The IIJA provides substantial funding for infrastructure improvements across the U.S., including transportation safety, road maintenance, and public transit projects.

- Eligible Projects: Roadway safety improvements, bridge repairs, public transit enhancements, and pedestrian/cycling infrastructure.

- Application Process: Applications are typically submitted through state Departments of Transportation (DOTs) and must align with federal infrastructure priorities.

- Example: Use IIJA funds to install roundabouts at high-risk intersections or to build protected bike lanes.

- Safe Streets and Roads for All (SS4A)

- Description: This program is specifically designed to help local governments achieve Vision Zero goals—eliminating traffic fatalities and serious injuries.

- Eligible Projects: Road safety plans, speed management projects, pedestrian safety improvements, and community engagement efforts.

- Application Process: Applications should include detailed safety plans and community engagement strategies.

- Example: Apply SS4A grants to develop protected pedestrian crossings and traffic calming measures.

- Transportation Alternatives Program (TAP)

- Description: TAP provides funding for smaller-scale transportation projects that enhance safety and connectivity for pedestrians, cyclists, and other non-motorized users.

- Eligible Projects: Bike lanes, pedestrian walkways, and Safe Routes to School initiatives.

- Application Process: Local governments apply through state DOTs, and projects must be part of a regional transportation plan.

- Example: Use TAP funds to create safe walking routes to schools and improve crosswalks.

- Highway Safety Improvement Program (HSIP)

- Description: HSIP is a core federal-aid program that funds projects specifically aimed at reducing fatalities and serious injuries on all public roads.

- Eligible Projects: Intersection improvements, lighting enhancements, and safety barriers.

- Application Process: Applications are submitted to the state DOT, often requiring datadriven evidence of crash reductions.

- Example: Use HSIP funds to install median barriers on rural roads and improve roadway lighting.

- Congestion Mitigation and Air Quality Improvement Program (CMAQ)

- Description: This program funds projects that reduce traffic congestion and improve air quality.

- Eligible Projects: Projects that promote alternative transportation modes, such as public transit, bike paths, and carpool programs.

- Application Process: Applications are coordinated through regional planning agencies and state DOTs.

- Example: Fund new bike lanes and pedestrian paths to reduce vehicle emissions in urban centers.

2. State Grants and Programs

- Missouri Department of Transportation (MoDOT) Safety Funds

- Description: MoDOT offers a variety of funding opportunities for safety improvements, including specific grants for rural safety projects.

- Eligible Projects: Roadway safety measures, traffic control devices, and infrastructure improvements in rural areas.

- Application Process: Submit applications directly to MoDOT, often as part of larger transportation safety plans.

- Example: Use MoDOT safety funds to install advanced warning signs and rumble strips in rural areas.

- State Transportation Block Grants

- Description: These grants provide flexible funding for a wide range of transportation projects, including road maintenance and improvements.

- Eligible Projects: Road resurfacing, bridge repairs, and traffic management systems.

- Application Process: Applications are typically submitted through regional transportation planning agencies.

- Example: Use block grant funds to repair road surfaces in areas with high accident rates.

- Missouri Foundation for Health Grants

- Description: Although primarily focused on health outcomes, this foundation can fund

projects that improve access to services and promote healthy communities.

- Eligible Projects: Infrastructure that promotes walking and biking, community health initiatives tied to safety improvements.

- Application Process: Nonprofits and local governments can apply directly through the foundation's grant programs.

- Example: Partner with health organizations to fund bike lanes and pedestrian walkways that promote active living.

3. Local Funding Sources

- Local Option Sales Taxes and Transportation Development Districts (TDDs)

- Description: Local governments can establish sales taxes dedicated to funding transportation projects.

- Eligible Projects: Road and bridge maintenance, public transit improvements, and pedestrian safety infrastructure.

- Example: Use local sales tax revenue to support the installation of new streetlights or traffic calming measures.

- General Fund Allocations from City and County Budgets

- Description: Municipalities and counties can allocate portions of their budgets directly to transportation and safety projects.

- Eligible Projects: Smaller-scale improvements like crosswalks, traffic signs, and sidewalk repairs.

- Example: Allocate city funds to improve pedestrian crossings in downtown areas.

- Public-Private Partnerships (PPPs)

- Description: Collaborate with private sector companies to fund infrastructure projects, sharing both the costs and benefits.

- Eligible Projects: Large-scale projects like highway expansions or public transit systems.

- Example: Partner with local businesses to co-fund roundabouts that improve access to commercial areas.

4. Regional and Community-Based Funding

- Regional Planning Commissions and Councils of Governments (COGs)

- Description: These organizations can help secure funding for projects that align with regional transportation priorities.

- Eligible Projects: Projects that improve regional connectivity or align with broader safety goals.

- Example: Work with the Harry S Truman Coordinating Council or the Southwest Missouri Council of Governments (SMCOG) to secure funding for rural road improvements.

- Community Development Block Grants (CDBG)

- Description: These federal funds, administered by states, support projects that benefit low- and moderate-income communities.

- Eligible Projects: Infrastructure improvements that enhance community safety and access.

- Example: Use CDBG funds to improve sidewalks and crosswalks in lower-income neighborhoods.

- Local Foundations and Philanthropic Organizations

- Description: Local foundations may be interested in funding projects that align with their goals of improving community well-being.

- Eligible Projects: Pedestrian safety, beautification projects, and community engagement initiatives.

- Example: Seek grants from local community foundations to install benches and lighting along new pedestrian pathways.

5. Private Sector Contributions

- Corporate Sponsorships

- Description: Businesses can sponsor projects as part of their corporate social responsibility (CSR) efforts.

- Eligible Projects: Beautification projects, bike-sharing programs, and public transit enhancements.

- Example: A local bank might sponsor the construction of a new park-and-ride lot or contribute to building a bike-share station.

- In-Kind Contributions from Construction and Engineering Firms

- Description: Some companies may offer reduced-cost services or donate materials as part of their community engagement efforts.

- Eligible Projects: Road construction, signage installation, and maintenance.

- Example: Partner with a local construction company to reduce costs on building new roundabouts or bike lanes.

6. Federal Loan Programs

- Transportation Infrastructure Finance and Innovation Act (TIFIA) Loans

- Description: TIFIA provides federal credit assistance for large infrastructure projects that might be too costly to fund through grants alone.

- Eligible Projects: Larger-scale projects like bridge replacements, highway expansions, or transit system upgrades.

- Application Process: Requires a detailed financial plan demonstrating the project's economic viability.

- Example: Use TIFIA loans for extensive roadway improvements, repaying the loan through future federal or state allocations.

- State Infrastructure Banks (SIBs)

- Description: SIBs provide loans for transportation projects that can be repaid through user fees or other project-generated revenue.

- Eligible Projects: Toll roads, public-private partnership projects, and revenue-generating transportation improvements.

- Example: Use SIB loans to build toll bridges or fund new public transit routes.

How to Approach Funding Applications

- Align Projects with Funding Priorities: Focus on aligning project goals with the specific priorities of each funding source, such as reducing fatalities for safety-focused grants or promoting active transportation for health-oriented grants.

- Prepare Data-Driven Proposals: Use crash data, traffic studies, and community input to build strong applications that clearly demonstrate the need for each project.

- Engage in Regional Partnerships: Partnering with regional planning commissions and neighboring communities can strengthen applications by showing broader support and regional benefits.

- Diversify Funding Sources: Combining multiple sources, such as federal grants with local matching funds, can make applications more competitive and help cover a larger portion of project costs.

These funding sources provide a range of opportunities to finance transportation and safety projects, allowing for both large-scale initiatives and smaller, targeted improvements. By carefully selecting and pursuing these funding opportunities, communities in Southwest Missouri can make significant strides in improving road safety and connectivity.

Appendix A: Crash Data Analysis and Maps

Detailed Crash Statistics (2019-2023)

County	Travel way	Log	Crash Class	Date	Severity Rating	Light Cond	Road Surf Cond	Weather Cond	Day Of Week	Time	Landed Latitude	Landed Longitude	No of Vehicles	City	Total AADT	Road Alignment
BARTON	RT V E	11.201	OUT OF CONTROL	10/2/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	145	37.6051 4	- 94.36348	1	NON-CITY OR UNINCORPORATED	400	Straight
BARTON	CRD SW 60TH RD E	1.406	OUT OF CONTROL	8/3/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	324	37.4204 6	- 94.59168	1	NON-CITY OR UNINCORPORATED		Straight
BARTON	MO 43 S	25.643	HEAD ON	9/10/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	435	37.4751 6	- 94.48239	2	NON-CITY OR UNINCORPORATED	1435	Straight
BARTON	MO 43 S	26.005	OUT OF CONTROL	10/17/202 2 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	232 9	37.4699 1	- 94.48246	1	NON-CITY OR UNINCORPORATED	1435	Straight
BARTON	IS 49 S	98.207	AVOIDING	7/2/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	194 0	37.6169 2	- 94.29321	1	NON-CITY OR UNINCORPORATED	1535 8	Curve
BARTON	US 160 E	27.238	OUT OF CONTROL	12/17/202 2 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	103 5	37.4959 4	- 94.13467	1	NON-CITY OR UNINCORPORATED	1862	Straight
BARTON	CST MAPLE S	0.326	OUT OF CONTROL	12/19/202 2 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	FREEZING	MON	173 3	37.4922 5	- 94.28188	1	LAMAR		Straight
BARTON	US 160 E	8.236	OUT OF CONTROL	10/25/201 9 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	220 5	37.4982 3	- 94.47609	1	NON-CITY OR UNINCORPORATED	2118	Curve
BARTON	E OR 49 S	0.582	OUT OF CONTROL	6/14/2019 0:00	FATAL	DAYLIGHT	WET	CLOUDY	FRI	940	37.5366 8	- 94.29566	1	NON-CITY OR UNINCORPORATED	30	Straight
BARTON	US 160 E	2.738	OUT OF CONTROL	3/28/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	153 5	37.4713 1	- 94.56779	1	NON-CITY OR UNINCORPORATED	1916	Curve
BARTON	RT Y S	1.003	RIGHT ANGLE	8/6/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	THU	150 0	37.3873 5	- 94.42804	2	NON-CITY OR UNINCORPORATED	71	Straight
BARTON	US 160 E	34.719	OUT OF CONTROL	12/20/201 9 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	223 5	37.416	- 94.09815	1	NON-CITY OR UNINCORPORATED	1108	Straight
BARTON	US 160 E	31.795	FARM ANIMAL	9/18/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	200 9	37.4584 1	- 94.09699	1	NON-CITY OR UNINCORPORATED	1150	Straight
BARTON	RT EE E	3.095	OUT OF CONTROL	8/20/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	154 0	37.5439 3	-94.2407	1	NON-CITY OR UNINCORPORATED	303	Curve

BARTON	RT T S	3.954	RIGHT ANGLE	12/7/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	TUE	143 2	37.4392 4	- 94.18904	2	NON-CITY OR UNINCORPORATED	642	Straight
BARTON	RT C E	6.041	RIGHT ANGLE	7/6/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	тни	132 2	37.5858 1	- 94.18461	2	NON-CITY OR UNINCORPORATED	430	Straight
BARTON	MO 126 E	17.534	RIGHT ANGLE	8/18/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	124 0	37.3984 6	- 94.29885	2	NON-CITY OR UNINCORPORATED	1231	Straight
BARTON	MO 43 S	19.538	ANGLE	11/2/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	941	37.5636 5	- 94.47773	2	NON-CITY OR UNINCORPORATED	2508	Straight
BARTON	CRD NE 30TH LN S	2.598	OUT OF CONTROL	8/2/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	161 4	37.5062 9	- 94.24244	1	NON-CITY OR UNINCORPORATED		Straight
BARTON	IS 49 N	75.81	OUT OF CONTROL	7/8/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	162 0	37.4726 7	- 94.29984	1	NON-CITY OR UNINCORPORATED	1386 0	Straight
BARTON	US 160 E	6.818	OUT OF CONTROL	4/27/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	820	37.4914 8	- 94.49955	1	NON-CITY OR UNINCORPORATED	1577	Curve
BARTON	MO 43 S	33.421	OUT OF CONTROL	4/7/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	тни	140	37.3623 9	- 94.48367	1	NON-CITY OR UNINCORPORATED	2269	Straight
BARTON	CRD NE 5TH RD E	0.538	OUT OF CONTROL	6/8/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	173 5	37.5081 4	- 94.28916	1	LAMAR	1240	Straight
BARTON	US 160 E	19.744	OTHER	9/20/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	925	37.4928 7	- 94.26675	2	LAMAR	3194	Straight
BARTON	RT K E	5.515	DEER	8/30/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	185 5	37.6131 3	- 94.54945	1	NON-CITY OR UNINCORPORATED	224	Straight
BARTON	US 160 E	36.829	OTHER	8/8/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	105 5	37.3928 1	- 94.08555	1	GOLDEN CITY	1649	Curve
BARTON	IS 49 S	109.76 2	CROSS MEDIAN	6/25/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	232 3	37.4496 7	- 94.29894	1	NON-CITY OR UNINCORPORATED	1379 8	Straight
BARTON	US 160 E	20.021	RIGHT ANGLE	3/10/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	180 5	37.4926 3	- 94.26171	2	LAMAR	3348	Straight
BARTON	MO 43 S	30.584	RIGHT ANGLE	4/2/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	213 5	37.4035	- 94.48283	2	NON-CITY OR UNINCORPORATED	1425	Straight
BARTON	RT A S	9.807	OUT OF CONTROL	2/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	153 4	37.5167 6	-94.1871	1	NON-CITY OR UNINCORPORATED	714	Straight
BARTON	US 160 E	31.741	OUT OF CONTROL	3/6/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	100	37.4592	- 94.09697	1	NON-CITY OR UNINCORPORATED	1150	Straight
BARTON	RT P E	0.682	DEER	6/1/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	933	37.5503 6	- 94.60463	1	NON-CITY OR UNINCORPORATED	339	Straight
BARTON	RT T S	3.676	OUT OF CONTROL	2/28/2019 0:00	SER. INJURY	DAYLIGHT	ICE	FREEZING	тни	103 8	37.4432 7	- 94.18895	1	NON-CITY OR UNINCORPORATED	730	Straight
BARTON	US 160 E	23.687	LEFT TURN RIGHT ANGLE COLLISION	1/7/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	211 3	37.4911 4	- 94.19504	2	NON-CITY OR UNINCORPORATED	2558	Curve
BARTON	CRD SW 20TH RD E	2.626	OUT OF CONTROL	7/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	141 0	37.4720 3	- 94.30678	1	NON-CITY OR UNINCORPORATED		Straight
BARTON	US 160 E	31.719	OUT OF CONTROL	6/22/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	102 5	37.4595 2	- 94.09696	1	NON-CITY OR UNINCORPORATED	1133	Straight

BARTON	CRD NW 20TH LN S	2.021	OUT OF CONTROL	9/1/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	183 4	37.5605 5	- 94.33109	1	NON-CITY OR UNINCORPORATED		Curve
BARTON	MO 43 S	19.19	OUT OF CONTROL	10/1/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	125 0	37.5686 8	- 94.47721	1	NON-CITY OR UNINCORPORATED	2275	Straight
BARTON	US 160 E	19.238	PEDESTRIAN	11/22/201 9 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	CLOUDY	FRI	171 5	37.4932 8	- 94.27593	1	LAMAR	6670	Straight
BARTON	CRD NW 130 LN S	1.739	OUT OF CONTROL	2/14/2020 0:00	SER. INJURY	DAYLIGHT	MUD	CLEAR	FRI	120 3	37.54	- 94.53357	1	NON-CITY OR UNINCORPORATED		Straight
BARTON	US 160 E	7.897	LEFT TURN RIGHT ANGLE COLLISION	11/1/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	CLOUDY	MON	190 0	37.4958 1	- 94.48143	2	NON-CITY OR UNINCORPORATED	2150	Straight
BARTON	CST POPLAR S	1.386	PEDALCYCLE	5/30/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	103 8	37.4910 6	- 94.27485	2	LAMAR		Straight
BARTON	E OR 49 S	3.863	HEAD ON	6/11/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	810	37.4892 1	- 94.29841	3	LAMAR HEIGHTS	413	Straight
BARTON	MO 43 S	30.584	RIGHT ANGLE	11/24/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	WED	192 9	37.4035	- 94.48283	2	NON-CITY OR UNINCORPORATED	1345	Straight
BARTON	MO 126 E	12.003	OUT OF CONTROL	7/15/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	150 5	37.4010 8	- 94.39932	1	NON-CITY OR UNINCORPORATED	401	Straight
BARTON	RP IS49N TO US160 E	0.051	OUT OF CONTROL	10/27/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	ICE	FREEZING	TUE	500	37.4918 2	- 94.29976	1	NON-CITY OR UNINCORPORATED	1872	Straight
BARTON	MO 126 E	0.007	HEAD ON	8/16/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	113 5	37.4061	- 94.61732	2	NON-CITY OR UNINCORPORATED	1296	Straight
BARTON	CRD SW 160 LN S	1.628	OUT OF CONTROL	5/27/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	WED	5	37.4830 6	- 94.59095	1	MINDENMINES		Straight
BARTON	RT K E	2.492	HEAD ON	12/18/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	174 5	37.6388 7	- 94.57207	2	NON-CITY OR UNINCORPORATED	299	Straight
BARTON	E OR 49 S	0.748	OUT OF CONTROL	10/21/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	182 4	37.5342 7	- 94.29578	1	NON-CITY OR UNINCORPORATED	32	Straight
BARTON	US 160 E	22.708	OUT OF CONTROL	10/23/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	133 5	37.4913 2	- 94.21283	1	NON-CITY OR UNINCORPORATED	3236	Straight
BARTON	US 160 E	19.082	LEFT TURN RIGHT ANGLE COLLISION	12/5/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	812	37.4933 9	- 94.27874	3	LAMAR	6670	Straight
BARTON	CST BROADWAY S	0.766	OUT OF CONTROL	8/23/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	170 2	37.4966 6	- 94.27599	2	LAMAR		Straight
BARTON	IS 49 N	77.314	OUT OF CONTROL	2/28/2019 0:00	SER. INJURY	DAYLIGHT	ICE	FREEZING	THU	828	37.4944 4	- 94.29972	1	NON-CITY OR UNINCORPORATED	1560 8	Straight
BARTON	IS 49 N	73.313	REAR END	2/13/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	155 0	37.4365 3	- 94.29926	2	NON-CITY OR UNINCORPORATED	1418 3	Straight
BARTON	US 160 E	20.023	OUT OF CONTROL	3/17/2021 0:00	SER. INJURY	DARK - UNKNOWN	WET	RAIN	WED	628	37.4926 3	- 94.26167	1	LAMAR	3236	Straight
BARTON	IS 49 N	71.997	OTHER	5/10/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	131 4	37.4174 5	-94.2995	2	NON-CITY OR UNINCORPORATED	1396 3	Straight
BARTON	RP IS49S TO US160 W	0.152	OUT OF CONTROL	4/13/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	111 7	37.4939 5	- 94.30053	1	LAMAR	1826	Straight

BARTON	RT T S	3.093	OUT OF CONTROL	10/10/202 3 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	144 5	37.4517 3	- 94.18877	1	NON-CITY OR UNINCORPORATED	866	Straight
BARTON	CRD SE 40TH RD E	1.002	OUT OF CONTROL	9/25/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	164 0	37.4373 3	-94.116	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	MO 66 W	12.353	RIGHT ANGLE	11/3/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	154 0	37.0855 9	- 94.58334	2	NON-CITY OR UNINCORPORATED	1418 7	Straight
JASPER	CST ST LOUIS ST S	1.778	OUT OF CONTROL	10/31/202 1 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SUN	10	37.1019 7	- 94.49474	1	JOPLIN	5327	Straight
JASPER	CRD OAK RD E	0.78	OTHER	2/4/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	SNO W	CLEAR	FRI	182 0	37.2760 3	- 94.60381	2	NON-CITY OR UNINCORPORATED	68	Straight
JASPER	MO 171 S	16.16	OUT OF CONTROL	3/20/2022 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SUN	304	37.1421 7	- 94.49248	1	WEBB CITY	1675 8	Straight
JASPER	CST E 20TH ST E	1.997	OUT OF CONTROL	1/7/2022 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	170 6	37.0692 2	- 94.47802	1	JOPLIN	1727 9	Straight
JASPER	CST W 20TH ST E	5.609	RIGHT ANGLE	4/16/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	140 9	37.0695 2	- 94.51633	2	JOPLIN	1218 5	Straight
JASPER	CRD PEACE CHURCH AVE S	1.661	OUT OF CONTROL	6/11/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	232 7	37.1196 4	-94.548	1	NON-CITY OR UNINCORPORATED	2582	Curve
JASPER	RT O S	6.254	OUT OF CONTROL	4/8/2022 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	FRI	153 5	37.2685 4	- 94.41679	1	NON-CITY OR UNINCORPORATED	334	Straight
JASPER	RT NN E	1.129	OUT OF CONTROL	6/1/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	WED	0	37.2909 4	- 94.08776	1	NON-CITY OR UNINCORPORATED	144	Straight
JASPER	LP 49 S	10.766	LEFT TURN	6/14/2022 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	TUE	222 3	37.1127 9	- 94.47608	2	JOPLIN	2087 8	Straight
JASPER	RT M E	16.128	OUT OF CONTROL	8/9/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	130 0	37.2965	- 94.31889	1	NON-CITY OR UNINCORPORATED	1069	Straight
JASPER	RT FF E	1.04	PEDALCYCLE	7/7/2022 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	202	37.0548 8	- 94.49606	2	JOPLIN	2189 8	Straight
JASPER	CRD NUTMEG RD E	1.995	RIGHT ANGLE	10/29/202 2 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SAT	113 9	37.2548 9	- 94.17983	2	NON-CITY OR UNINCORPORATED		Straight
JASPER	MO 43 S	51.356	PEDESTRIAN	10/22/202 2 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	248	37.1093	- 94.51189	1	JOPLIN	1163 1	Straight
JASPER	MO 37 S	25.369	RIGHT ANGLE	11/29/202 2 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	154 6	37.0725 8	- 94.16743	2	SARCOXIE	3392	Straight
JASPER	MO 43 S	45.498	OUT OF CONTROL	12/17/202 2 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	214 5	37.1935 8	- 94.50881	1	NON-CITY OR UNINCORPORATED	4714	Straight
JASPER	MO 171 S	15.789	PEDESTRIAN	12/8/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	RAIN	THU	613	37.1423 5	-94.4992	1	JOPLIN	1675 8	Straight
JASPER	MO 66 W	12.353	RIGHT ANGLE	6/8/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	180 5	37.0855 9	- 94.58334	2	NON-CITY OR UNINCORPORATED	1391 7	Straight
JASPER	LP 49 S	13.187	LEFT TURN RIGHT ANGLE COLLISION	4/8/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	194 5	37.0777 2	- 94.47754	2	JOPLIN	2806 5	Straight
JASPER	CST MAIN E	0.109	OUT OF CONTROL	5/20/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	202 5	37.2745 4	- 94.60796	1	ASBURY		Straight

JASPER	RT BB S	3.937	REAR END	1/7/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	180 0	37.2363 4	- 94.19844	3	NON-CITY OR UNINCORPORATED	764	Straight
JASPER	LP 49 S	14.366	LEFT TURN RIGHT ANGLE COLLISION	4/2/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	165 6	37.0606 2	- 94.47818	2	JOPLIN	2674 3	Straight
JASPER	CST CONNECTICUT AVE S	1.348	RIGHT ANGLE	1/3/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SUN	155 6	37.0592 1	- 94.49488	2	JOPLIN	8444	Straight
JASPER	CST W 20TH ST E	5.421	OUT OF CONTROL	5/27/2021 0:00	FATAL	DAYLIGHT	WET	CLOUDY	THU	103 6	37.0696 7	- 94.51972	1	JOPLIN	1204 9	Straight
JASPER	MO 171 S	13.202	HEAD ON	5/17/2021 0:00	FATAL	DAYLIGHT	WET	CLOUDY	MON	124 4	37.1619 1	- 94.53029	2	CARL JUNCTION	1195 5	Curve
JASPER	MO 43 S	45.933	HEAD ON	2/25/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	173 8	37.1872 8	- 94.50886	2	NON-CITY OR UNINCORPORATED	5133	Straight
JASPER	RT E E	8.414	DEER	7/11/2021 0:00	FATAL	DAYLIGHT	WET	CLOUDY	SUN	194 5	37.1460 9	- 94.16426	1	NON-CITY OR UNINCORPORATED	2296	Straight
JASPER	IS 49 S	123.14 6	OUT OF CONTROL	8/23/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	FRI	222 0	37.2605 9	- 94.30539	1	NON-CITY OR UNINCORPORATED	1374 7	Curve
JASPER	MO 96 W	39.802	REAR END	1/4/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	125 0	37.1790 9	- 94.34504	2	NON-CITY OR UNINCORPORATED	1779 7	Straight
JASPER	MO 66 E	4.124	PEDALCYCLE	6/24/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	192 0	37.0846 6	- 94.54603	2	JOPLIN	1530 9	Straight
JASPER	CST 1ST ST E	0.018	OUT OF CONTROL	1/15/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	184 2	37.1448 1	- 94.43267	1	CARTERVILLE		Curve
JASPER	CST MAIDEN LANE S	1.565	OUT OF CONTROL	6/18/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	124 5	37.0674 6	- 94.53192	2	JOPLIN	1023 7	Straight
JASPER	IS 44 E	12.703	REAR END	9/3/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	145 5	37.0660 4	- 94.41305	2	JOPLIN	3613 0	Straight
JASPER	RT FF E	5.215	RIGHT ANGLE	11/30/201 9 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	153 4	37.0543 9	- 94.42098	2	JOPLIN	7755	Straight
JASPER	CRD JACKPINE RD E	2.029	OUT OF CONTROL	9/26/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	190 0	37.1948	- 94.34605	1	NON-CITY OR UNINCORPORATED	442	Straight
JASPER	IS 49 N	49.924	OUT OF CONTROL	4/16/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	0	37.1290 5	- 94.31083	1	NON-CITY OR UNINCORPORATED	1261 8	Curve
JASPER	MO 171 S	16.611	OUT OF CONTROL	9/22/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	124 9	37.1418 8	- 94.48433	1	WEBB CITY	1589 1	Straight
JASPER	MO 171 S	21.267	OUT OF CONTROL	1/15/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	130	37.1611 6	- 94.41116	1	NON-CITY OR UNINCORPORATED	1599 6	Curve
JASPER	MO 43 S	54.394	HEAD ON	5/14/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	THU	132 8	37.0653 3	- 94.51433	2	JOPLIN	1273 9	Straight
JASPER	MO 43 S	51.315	HEAD ON	10/7/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	THU	124 7	37.1098 6	- 94.51161	2	JOPLIN	1342 5	Curve
JASPER	CRD KAFIR RD E	9.441	OUT OF CONTROL	6/13/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	200	37.2135 7	-94.4472	1	NON-CITY OR UNINCORPORATED	137	Straight
JASPER	IS 44 W	271.37 3	HEAD ON	10/26/202 1 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	223 5	37.0815 9	- 94.25248	2	NON-CITY OR UNINCORPORATED	3291 6	Straight

JASPER	RT JJ S	1.657	OUT OF CONTROL	9/26/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	315	37.1572 7	- 94.58084	1	NON-CITY OR UNINCORPORATED	3912	Curve
JASPER	CST 15TH ST E	2.002	HEAD ON	5/11/2020 0:00	FATAL	DAYLIGHT	WET	RAIN	MON	174 3	37.0744	- 94.49071	2	JOPLIN	7250	Straight
JASPER	RT FF E	1.595	LEFT TURN	6/19/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	FRI	150 9	37.0548 7	- 94.48604	2	JOPLIN	1906 1	Straight
JASPER	RT D E	3.307	OUT OF CONTROL	7/18/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	190 5	37.1845 3	- 94.45514	1	ORONOGO	2186	Curve
JASPER	RT HH E	3.964	HEAD ON	7/16/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	192 8	37.1406 3	- 94.36606	2	NON-CITY OR UNINCORPORATED	5192	Curve
JASPER	MO 43 S	52.728	PEDESTRIAN	9/7/2020 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	200 1	37.0895	- 94.51324	1	JOPLIN	1233 9	Straight
JASPER	CRD HOMESTEAD DR S	0.214	OUT OF CONTROL	7/10/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	214 3	37.1697	- 94.49217	1	JOPLIN		Curve
JASPER	RT FF E	4.047	LEFT TURN RIGHT ANGLE COLLISION	6/27/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	36	37.0551	- 94.44201	2	JOPLIN	1189 4	Straight
JASPER	CST E 20TH ST E	1.256	OUT OF CONTROL	3/13/2020 0:00	FATAL	DARK W/ STREET LIGHTS ON	WET	CLOUDY	FRI	211 7	37.0692 6	- 94.49142	1	JOPLIN	1312 0	Straight
JASPER	MO 43 S	51.359	HEAD ON	4/30/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	639	37.1092 6	- 94.51191	2	JOPLIN	1233 9	Curve
JASPER	IS 44 W	274.75 2	OUT OF CONTROL	3/26/2020 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLOUDY	THU	350	37.0819 9	- 94.31365	1	FIDELITY	3302 3	Straight
JASPER	CST MURPHY BLVD E	1.957	FIXED OBJECT	12/22/202 0 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLOUDY	TUE	716	37.0958 4	- 94.51087	1	JOPLIN	6111	Straight
JASPER	CST E 20TH ST E	0.947	HEAD ON	11/4/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	104 8	37.0693	- 94.49701	2	JOPLIN	1327 3	Straight
JASPER	MO 96 E	13.045	OUT OF CONTROL	12/31/202 0 0:00	FATAL	DARK W/ STREET LIGHTS ON	WET	CLOUDY	THU	195 0	37.1788	- 94.33446	1	CARTHAGE	1564 4	Straight
JASPER	RT H E	15.123	OUT OF CONTROL	12/24/202 0 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	THU	130 5	37.3410 7	- 94.36048	1	NON-CITY OR UNINCORPORATED	215	Straight
JASPER	MO 96 E	12.356	OUT OF CONTROL	2/22/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	715	37.1788 4	- 94.34693	1	NON-CITY OR UNINCORPORATED	1564 4	Straight
JASPER	RT FF E	1.021	LEFT TURN	5/8/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	155 8	37.0548 8	- 94.49641	2	JOPLIN	2073 9	Straight
JASPER	MO 66 E	5.328	RIGHT ANGLE	9/5/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	180 1	37.0843 5	- 94.52427	3	JOPLIN	1496 9	Straight
JASPER	IS 44 W	278.13 9	OUT OF CONTROL	6/20/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	190 0	37.0793 7	- 94.37434	4	NON-CITY OR UNINCORPORATED	3613 0	Straight
JASPER	MO 96 E	16.504	TOWED UNIT DISCONNECTS	8/7/2019 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	173 0	37.1959 6	- 94.28157	3	NON-CITY OR UNINCORPORATED	6251	Straight
JASPER	MO 171 S	9.277	PEDESTRIAN	7/8/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	345	37.2104 3	-94.564	1	NON-CITY OR UNINCORPORATED	7168	Straight
JASPER	RT M E	5.515	AVOIDING	6/10/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	151 5	37.3026 6	- 94.51139	2	NON-CITY OR UNINCORPORATED	511	Straight

JASPER	RT H E	16.499	OUT OF CONTROL	7/23/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	232 2	37.3370 5	-94.3378	1	NON-CITY OR UNINCORPORATED	453	Curve
JASPER	IS 44 E	14.216	OUT OF CONTROL	1/14/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	102 5	37.0745 4	- 94.38782	1	NON-CITY OR UNINCORPORATED	3208 3	Straight
JASPER	MO 171 S	2.062	RIGHT ANGLE	9/29/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	141 5	37.3061	- 94.61146	2	NON-CITY OR UNINCORPORATED	8032	Straight
JASPER	MO 66 E	8.933	RIGHT ANGLE	7/3/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SAT	847	37.0838 5	- 94.45912	3	DUQUESNE	1293 2	Straight
JASPER	CRD HARMONY RD E	0.672	OUT OF CONTROL	10/4/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	192 5	37.1695	- 94.25691	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	MO 96 E	23.171	HEAD ON	4/8/2023 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	205 0	37.1962 5	- 94.16137	2	NON-CITY OR UNINCORPORATED	3682	Straight
JASPER	MO 171 S	11.235	HEAD ON	3/19/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SUN	120 5	37.1864 1	- 94.54667	2	CARL JUNCTION	6150	Straight
JASPER	MO 96 E	21.066	RIGHT ANGLE	9/28/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	182 5	37.1970 5	- 94.19951	2	NON-CITY OR UNINCORPORATED	3682	Straight
JASPER	CRD 190 S	1.002	RIGHT ANGLE	9/8/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	110 2	37.1263 9	- 94.40285	2	NON-CITY OR UNINCORPORATED		Straight
JASPER	MO 43 S	52.415	LEFT TURN RIGHT ANGLE COLLISION	9/2/2023 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	204 5	37.0940 2	- 94.51305	3	JOPLIN	1181 7	Straight
JASPER	CRD PEACE CHURCH AVE S	1.65	OUT OF CONTROL	11/16/202 3 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	234 6	37.1198	- 94.54804	1	NON-CITY OR UNINCORPORATED	2306	Curve
JASPER	LP 49 S	9.198	PEDESTRIAN	11/10/202 3 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	184 7	37.1355 3	- 94.47494	1	WEBB CITY	2025 6	Straight
JASPER	LP 49 S	14.599	PEDESTRIAN	11/25/202 3 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	141 0	37.0572 2	-94.4783	1	JOPLIN	2356 8	Straight
JASPER	IS 44 E	16.993	REAR END	6/26/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	173 1	37.0819 2	- 94.33933	5	NON-CITY OR UNINCORPORATED	3785 1	Straight
JASPER	MO 249 S	3.05	REAR END	7/7/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	115 5	37.1027 1	- 94.42775	3	JOPLIN	2451 1	Curve
JASPER	MO 43 S	37.616	ANGLE	12/29/202 3 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	616	37.3016	- 94.48611	2	NON-CITY OR UNINCORPORATED	3071	Straight
JASPER	RT P E	6.326	LEFT TURN RIGHT ANGLE COLLISION	5/10/2023 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	124 1	37.0886 6	- 94.54881	2	JOPLIN	1039 4	Straight
JASPER	IS 44 E	22.433	REAR END	4/15/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	135 5	37.0812 6	- 94.24088	2	NON-CITY OR UNINCORPORATED	3190 0	Straight
JASPER	RT FF E	1.63	RIGHT ANGLE	11/10/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	174 7	37.0548 6	- 94.48541	2	JOPLIN	2073 9	Straight
JASPER	RT MM E	0.387	OUT OF CONTROL	5/29/2019 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	WED	172 9	37.1938 4	- 94.47269	1	ORONOGO	660	Straight
JASPER	CST MAPLE ST S	0.228	PEDESTRIAN	11/12/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	193 2	37.1694 4	- 94.31293	1	CARTHAGE		Straight
JASPER	IS 49 N	56.798	OUT OF CONTROL	5/19/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	173 0	37.2054 9	- 94.30951	1	NON-CITY OR UNINCORPORATED	1337 8	Straight

JASPER	LP 49 S	9.743	OUT OF CONTROL	10/3/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	215 4	37.1276 2	- 94.47545	1	WEBB CITY	1843 5	Straight
JASPER	IS 44 E	16.883	OTHER	4/18/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	160 0	37.0819 4	- 94.34133	1	NON-CITY OR UNINCORPORATED	3302 3	Straight
JASPER	MO 66 W	13.547	OUT OF CONTROL	2/2/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	165 5	37.0858 7	- 94.60495	1	NON-CITY OR UNINCORPORATED	1337	Curve
JASPER	CRD 210 S	2.933	RIGHT ANGLE	1/10/2022 0:00	SER.	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	180 5	37.2569 2	- 94.43521	2	NON-CITY OR UNINCORPORATED		Straight
JASPER	MO 43 S	39.44	OUT OF CONTROL	3/4/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	542	37.2752 9	- 94.48831	1	NON-CITY OR UNINCORPORATED	3095	Straight
JASPER	CRD SCHIFFERDECKER	0.35	OUT OF CONTROL	2/24/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	FREEZING	THU	183 0	37.1095 4	- 94.54407	2	NON-CITY OR UNINCORPORATED	6244	Curve
JASPER	AVE S RP M0171S TO M0249S S	0.284	OUT OF CONTROL	2/24/2022 0:00	SER. INJURY	DAYLIGHT	ICE	RAIN	THU	171 5	37.1384 5	-94.4434	1	CARTERVILLE	4570	Curve
JASPER	CRD CIVIL WAR RD S	7.462	OUT OF CONTROL	1/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	145 3	37.1886 3	-94.3259	1	CARTHAGE	1878	Curve
JASPER	MO 43 S	37.616	RIGHT ANGLE	2/12/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	220 5	37.3016	- 94.48611	2	NON-CITY OR UNINCORPORATED	3095	Straight
JASPER	CST 15TH ST E	1.81	LEFT TURN	3/21/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	213 8	37.0744 9	- 94.49419	2	JOPLIN	7801	Straight
JASPER	MO 571 S	2.937	LEFT TURN RIGHT ANGLE COLLISION	4/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	170 0	37.1524	- 94.31467	2	CARTHAGE	8011	Straight
JASPER	CST 15TH ST E	2.596	LEFT TURN	4/22/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	924	37.0741	- 94.47995	3	JOPLIN	7801	Straight
JASPER	CST WALL AVE N	1.38	RIGHT ANGLE	5/1/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	155 1	37.0750 7	- 94.51608	2	JOPLIN	3240	Straight
JASPER	MO 37 S	24.401	OUT OF CONTROL	3/30/2022 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	WED	651	37.0866 1	- 94.16686	2	NON-CITY OR UNINCORPORATED	864	Straight
JASPER	RT FF E	1.581	PEDESTRIAN	3/31/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	212 5	37.0548 7	- 94.48629	1	JOPLIN	2189 8	Straight
JASPER	MO 171 S	3.556	OUT OF CONTROL	4/15/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	222 0	37.2848 7	- 94.60653	1	NON-CITY OR UNINCORPORATED	7927	Curve
JASPER	CRD KAFIR RD E	4.062	RIGHT ANGLE	4/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	175 0	37.2160 9	- 94.54464	2	NON-CITY OR UNINCORPORATED	115	Straight
JASPER	CST C ST E	0.825	PARKING OR PARKED CAR	4/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	150 0	37.0940 8	- 94.51609	2	JOPLIN		Straight
JASPER	RT Z E	0.76	PEDALCYCLE	1/29/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	945	37.1807 8	- 94.57216	2	CARL JUNCTION	1648	Straight
JASPER	CRD SCHIFFERDECKER AVE S	0.16	OUT OF CONTROL	4/8/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	900	37.1122 8	- 94.54386	1	NON-CITY OR UNINCORPORATED	6244	Curve
JASPER	CRD W JUNGE BLVD E	3.277	DEER	4/10/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	212 4	37.0775 5	- 94.55842	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	CST 26TH ST E	1.97	OUT OF CONTROL	4/19/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	121 6	37.0625 6	- 94.53228	1	JOPLIN	3679	Straight

JASPER	CST BRIARBROOK	1.989	OUT OF CONTROL	5/13/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	220	37.1560 6	- 94.53074	1	CARL JUNCTION		Curve
JASPER	CRD PEACE	1.915	OUT OF CONTROL	4/22/2022	SER.	DAYLIGHT	DRY	CLEAR	FRI	162	37.1161	-94.547	1	NON-CITY OR	2582	Curve
5	CHURCH AVE S			0:00	INJURY					5	8			UNINCORPORATED		
JASPER	MO 96 E	13.109	OUT OF CONTROL	5/23/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	MON	221 9	37.1787 8	- 94.33329	1	CARTHAGE	1183 7	Straight
JASPER	CRD JOPLIN ST S	1.352	OUT OF CONTROL	5/9/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	910	37.1594 2	- 94.55667	1	NON-CITY OR UNINCORPORATED	3544	Straight
JASPER	CST GARRISON AVE N	0.282	OUT OF CONTROL	6/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	174 8	37.1442 1	- 94.31469	1	CARTHAGE		Straight
JASPER	CST DUQUESNE RD N	2.803	FIXED OBJECT	5/26/2022 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	THU	741	37.0952 8	- 94.45871	1	JOPLIN	7686	Straight
JASPER	CRD 100 S	3.462	OUT OF CONTROL	6/14/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	211 5	37.0534 5	-94.2408	1	NON-CITY OR UNINCORPORATED	1216	Straight
JASPER	CRD FIR RD E	1.901	OUT OF CONTROL	5/13/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	925	37.1401	- 94.27611	1	NON-CITY OR UNINCORPORATED	2204	Straight
JASPER	CST ROLLA ST E	0.507	RIGHT ANGLE	6/4/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	180 9	37.1067 1	- 94.48636	2	JOPLIN		Straight
JASPER	CRD CIVIL WAR RD S	7.507	OUT OF CONTROL	7/1/2022 0:00	SER. INJURY	DARK - UNKNOWN	DRY	CLEAR	FRI	307	37.1880 4	- 94.32556	1	CARTHAGE	1878	Curve
JASPER	CST PENNSYLVANIA AVE S	0.404	RIGHT ANGLE	6/30/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	175 1	37.0827 2	- 94.51134	2	JOPLIN	1235	Straight
JASPER	RT FF E	4.715	LEFT TURN	7/27/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	175 7	37.0545 4	- 94.43001	2	JOPLIN	1218 7	Straight
JASPER	MO 66 E	4.207	AVOIDING	5/18/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	211 0	37.0846 6	- 94.54453	1	JOPLIN	1501 0	Straight
JASPER	RT P E	3.689	OUT OF CONTROL	2/15/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	355	37.1011 3	- 94.58193	1	NON-CITY OR UNINCORPORATED	3639	Curve
JASPER	LP 49 S	14.214	LEFT TURN	8/3/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	758	37.0628 2	- 94.47811	2	JOPLIN	2319 7	Straight
JASPER	CST SCHIFFERDECKER AVE S	3.021	HEAD ON	6/22/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	133 4	37.0560 1	-94.5502	2	JOPLIN	1115 9	Straight
JASPER	LP 49 S	12.318	REAR END	7/4/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	221 9	37.0902 9	- 94.47698	2	JOPLIN	2681 4	Straight
JASPER	RT FF E	1.035	REAR END	11/9/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	951	37.0548 8	- 94.49615	5	JOPLIN	2189 8	Straight
JASPER	RP MO249N TO MO171N N	0.138	OUT OF CONTROL	8/21/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	145 2	37.1372 4	- 94.44057	1	CARTERVILLE	4125	Curve
JASPER	MO 43 S	52.921	PEDESTRIAN	9/10/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	223 7	37.0866 9	- 94.51334	1	JOPLIN	1163 1	Straight
JASPER	CST E 20TH ST E	2.249	LEFT TURN	7/16/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	160 5	37.0695 8	- 94.47356	2	JOPLIN	1034 0	Straight
JASPER	LP 49 S	13.126	RIGHT ANGLE	9/4/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SUN	224 4	37.0786 1	- 94.47747	2	JOPLIN	2559 8	Straight

JASPER	LP 49 S	11.775	RIGHT ANGLE	9/22/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	142 8	37.0981 7	- 94.47669	2	JOPLIN	2681 4	Straight
JASPER	LP 49 S	11.437	SIDESWIPE	9/23/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	958	37.1030 7	- 94.47649	2	JOPLIN	2087 8	Straight
JASPER	CST SCHIFFERDECKER AVE S	2.058	RIGHT ANGLE	4/15/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	152 4	37.0699 8	- 94.54953	2	JOPLIN	1115 9	Straight
JASPER	MO 96 E	5.881	OUT OF CONTROL	9/17/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	140 5	37.1991 6	- 94.45282	1	ORONOGO	1788	Straight
JASPER	RT M E	17.037	LEFT TURN RIGHT ANGLE COLLISION	8/10/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	120 2	37.2961 1	- 94.30238	2	NON-CITY OR UNINCORPORATED	1069	Straight
JASPER	RT FF E	3.037	LEFT TURN	9/27/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	729	37.0548 1	- 94.45999	2	JOPLIN	1265 9	Straight
JASPER	CRD LINCOLN RD E	3.529	OUT OF CONTROL	9/2/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	143 0	37.2160 1	- 94.08042	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	LP 49 S	12.895	RIGHT TURN RIGHT ANGLE COLLISION	8/13/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	122 6	37.0819 4	- 94.47736	2	JOPLIN	2559 8	Straight
JASPER	RT E E	5.111	OUT OF CONTROL	9/9/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	230 5	37.1538 8	- 94.22204	1	NON-CITY OR UNINCORPORATED	2326	Straight
JASPER	IS 44 W	270.59 7	OUT OF CONTROL	4/22/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	210 4	37.0814 7	- 94.23844	1	NON-CITY OR UNINCORPORATED	3414 7	Straight
JASPER	CST WALL AVE N	2.394	RIGHT ANGLE	9/16/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	103 2	37.0897 1	- 94.51541	2	JOPLIN	2625	Straight
JASPER	MO 66 E	4.125	LEFT TURN	9/21/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	144 5	37.0846 6	- 94.54601	2	JOPLIN	1501 0	Straight
JASPER	MO 66 E	10.401	REAR END	4/26/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	950	37.0834 8	- 94.43254	2	NON-CITY OR UNINCORPORATED	1296 6	Straight
JASPER	MO 66 E	7.034	BACKING	9/9/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	104 7	37.0838 4	- 94.49342	2	JOPLIN	1709 4	Straight
JASPER	CST BROADWAY ST E	0.766	RIGHT ANGLE	9/16/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	828	37.0918	- 94.49915	2	JOPLIN	4785	Straight
JASPER	RT FF E	3.029	LEFT TURN	10/6/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	194 7	37.0548 1	- 94.46014	2	JOPLIN	1265 9	Straight
JASPER	RT TT E	0.393	LEFT TURN RIGHT ANGLE COLLISION	9/28/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	201 6	37.0981 1	- 94.46956	2	JOPLIN	9463	Straight
JASPER	IS 44 W	278.30 6	OUT OF CONTROL	2/24/2022 0:00	SER. INJURY	DAYLIGHT	ICE	CLOUDY	THU	715	37.0784 3	- 94.37712	1	NON-CITY OR UNINCORPORATED	3868 0	Straight
JASPER	CRD CHAPEL RD S	0.518	OUT OF CONTROL	10/12/202 2 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	WED	820	37.1038 6	-94.3433	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	CST 4TH ST E	1.521	RIGHT ANGLE	11/17/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	140 4	37.0879 1	- 94.52128	2	JOPLIN	5555	Straight
JASPER	LP 49 S	12.736	PEDESTRIAN	11/19/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	173 0	37.0842 5	- 94.47725	2	JOPLIN	2559 8	Straight
JASPER	MO 571 S	1.278	OUT OF CONTROL	10/15/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	175 6	37.1764 2	-94.314	1	CARTHAGE	6449	Straight

JASPER	CRD FIR RD E	3.924	LEFT TURN	12/3/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	171 7	37.1434 6	- 94.53715	2	CARL JUNCTION	5683	Straight
JASPER	CRD CHAPEL RD S	1.025	OUT OF CONTROL	11/19/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	205 0	37.0968 9	-94.3437	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	IS 44 W	272.56 3	PASSING	10/29/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	113 5	37.0817 2	- 94.27403	3	NON-CITY OR UNINCORPORATED	3414 7	Straight
JASPER	IS 44 E	29.243	OUT OF CONTROL	11/19/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	120 0	37.0784 2	- 94.11762	1	NON-CITY OR UNINCORPORATED	3079 0	Straight
JASPER	LP 49 S	11.971	REAR END	12/21/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	170 3	37.0953 2	- 94.47681	2	JOPLIN	2681 4	Straight
JASPER	CRD ECLIPSE RD E	0	OUT OF CONTROL	12/30/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	190 0	37.1213 9	- 94.52525	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	CST 2ND ST E	1.781	RIGHT ANGLE	7/21/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	153 1	37.0897 4	- 94.51652	2	JOPLIN	3105	Straight
JASPER	IS 49 N	47.788	CROSS MEDIAN	10/29/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	135	37.0982 7	- 94.31146	1	NON-CITY OR UNINCORPORATED	2080 6	Straight
JASPER	LP 49 S	9.296	LEFT TURN RIGHT ANGLE COLLISION	7/9/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	214 8	37.1341 1	- 94.47507	2	WEBB CITY	1993 7	Straight
JASPER	CST PERKINS ST E	1.09	OUT OF CONTROL	12/15/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	205 8	37.0953 7	- 94.53119	1	JOPLIN		Straight
JASPER	RT HH E	2.7	REAR END	4/30/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	175 5	37.1406 8	- 94.38892	4	NON-CITY OR UNINCORPORATED	5653	Straight
JASPER	CST 3RD ST E	0.108	RIGHT ANGLE	2/3/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	170 6	37.0878 8	- 94.47512	2	JOPLIN	6466	Straight
JASPER	CRD 60 S	6.363	OUT OF CONTROL	2/20/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	104 0	37.1768 3	-94.1637	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	MO 66 E	4.363	LEFT TURN RIGHT ANGLE COLLISION	2/12/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	172 4	37.0847 9	- 94.54172	2	JOPLIN	1612 4	Straight
JASPER	MO 59 N	45.953	OUT OF CONTROL	2/10/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	615	37.0774 3	- 94.31248	1	FIDELITY	7976	Straight
JASPER	LP 49 S	12.914	PEDESTRIAN	1/31/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	FREEZING	TUE	184 9	37.0816 7	- 94.47737	1	JOPLIN	2600 7	Straight
JASPER	CST BAKER BLVD S	0.252	RIGHT ANGLE	1/27/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	193 0	37.1765 4	- 94.32751	2	CARTHAGE	4365	Straight
JASPER	RT P E	3.642	OUT OF CONTROL	1/29/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	ICE	RAIN	SUN	234 5	37.1015 7	- 94.58256	2	NON-CITY OR UNINCORPORATED	3949	Curve
JASPER	MO 43 S	52.651	PEDESTRIAN	2/9/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	185 7	37.0906 2	- 94.51317	1	JOPLIN	1181 7	Straight
JASPER	MO 96 E	11.342	LEFT TURN	2/20/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	154 0	37.1816	- 94.36357	2	NON-CITY OR UNINCORPORATED	850	Straight
JASPER	CST LONE ELM RD S	1.893	OTHER	1/8/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	123 0	37.1188 7	- 94.52536	1	NON-CITY OR UNINCORPORATED	3801	Straight
JASPER	CRD PEACE CHURCH AVE S	0.343	OUT OF CONTROL	1/12/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	182 0	37.1387 5	- 94.54725	1	NON-CITY OR UNINCORPORATED	2306	Straight

JASPER	CST MAIN ST S	2.146	LEFT TURN RIGHT ANGLE COLLISION	2/27/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	141 3	37.1547 4	- 94.31168	2	CARTHAGE	2944	Straight
JASPER	MO 96 E	14.178	LEFT TURN	1/24/2023 0:00	SER. INJURY	DARK - UNKNOWN	DRY	CLEAR	TUE	355	37.1786 9	- 94.31396	2	CARTHAGE	1066 3	Straight
JASPER	CRD E ZORA ST E	0.745	OUT OF CONTROL	3/18/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	162 5	37.1122 3	- 94.43957	1	NON-CITY OR UNINCORPORATED	5893	Straight
JASPER	CST 15TH ST E	1.257	REAR END	1/21/2023 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	SAT	155 3	37.0747 8	- 94.50419	2	JOPLIN	6076	Straight
JASPER	RT P E	1.658	OUT OF CONTROL	3/25/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	SAT	332	37.1245 8	- 94.59053	1	NON-CITY OR UNINCORPORATED	598	Curve
JASPER	MO 66 E	8.895	REAR END	3/31/2023 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	FRI	917	37.0838 7	- 94.45981	3	DUQUESNE	1967 6	Straight
JASPER	RT FF E	1.845	LEFT TURN	3/30/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	135 1	37.0548 6	- 94.48151	2	JOPLIN	2224 8	Straight
JASPER	CRD W ZORA ST E	1.008	RIGHT ANGLE	3/29/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	184 5	37.1141	- 94.52558	2	NON-CITY OR UNINCORPORATED	7053	Straight
JASPER	RT HH E	0.8	REAR END	5/3/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	132 5	37.1415 1	- 94.42325	2	NON-CITY OR UNINCORPORATED	4249	Curve
JASPER	CST FLORIDA AVE S	2.134	PASSING	4/30/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	101 3	37.0819 7	- 94.48626	2	JOPLIN	3442	Straight
JASPER	MO 43 S	53.497	OUT OF CONTROL	4/22/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	232 8	37.0783 2	- 94.51376	1	JOPLIN	1355 1	Straight
JASPER	MO 96 E	13.057	OUT OF CONTROL	5/5/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	554	37.1788	- 94.33424	1	CARTHAGE	1997 1	Straight
JASPER	CST SCHIFFERDECKER AVE S	1.485	OUT OF CONTROL	4/29/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	233 3	37.0783	- 94.54918	1	JOPLIN	9931	Straight
JASPER	CST 26TH ST E	2.948	LEFT TURN	4/1/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	192 0	37.0622 6	-94.5145	2	JOPLIN	3443	Straight
JASPER	CST WALL AVE N	1.594	OUT OF CONTROL	4/10/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	145 8	37.0781 8	- 94.51592	1	JOPLIN	3376	Straight
JASPER	IS 44 E	31.961	PASSING	4/28/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	160 0	37.0772 4	- 94.06842	2	NON-CITY OR UNINCORPORATED	3329 6	Straight
JASPER	CST E 19TH ST E	0.061	RIGHT ANGLE	4/13/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	121 2	37.0705 8	-94.513	2	JOPLIN		Straight
JASPER	MO 171 S	15.449	OUT OF CONTROL	5/21/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	125 9	37.1425 2	- 94.50536	1	JOPLIN	1835 5	Straight
JASPER	MO 96 E	13.056	OUT OF CONTROL	5/13/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	CLOUDY	SAT	223 5	37.1788	- 94.33426	1	CARTHAGE	1997 1	Straight
JASPER	CRD 240 S	2.976	OUT OF CONTROL	5/17/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	181 6	37.2151 3	- 94.49021	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	RT HH E	0.973	HEAD ON	1/6/2021 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	WED	735	37.1410 6	- 94.42021	2	CARTERVILLE	5976	Straight
JASPER	CST DUQUESNE RD S	2.678	OUT OF CONTROL	1/29/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	190 0	37.0736 4	- 94.45947	1	DUQUESNE	7364	Straight

JASPER	CRD PEMBROOK RD E	0.549	OUT OF CONTROL	2/27/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	144 5	37.2784 5	- 94.38474	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	MO 171 N	7.595	OUT OF CONTROL	3/7/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	219	37.1418 3	- 94.45297	1	WEBB CITY	1247 7	Straight
JASPER	LP 49 S	12.554	DUAL LEFTS COLLIDE	3/8/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	142 4	37.0868 7	- 94.47718	2	JOPLIN	2094 6	Straight
JASPER	CST HIGH ST E	0.002	PEDESTRIAN	3/16/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	190 3	37.1848 9	- 94.32262	1	CARTHAGE	719	Straight
JASPER	IS 44 E	26.88	OUT OF CONTROL	4/9/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	RAIN	FRI	220 0	37.0794 3	-94.1604	1	NON-CITY OR UNINCORPORATED	2805 2	Straight
JASPER	MO 43 S	37.616	RIGHT ANGLE	4/12/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	MON	225 0	37.3016	- 94.48611	2	NON-CITY OR UNINCORPORATED	3372	Straight
JASPER	CST NUTMEG RD E	3.131	OUT OF CONTROL	3/29/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	100 0	37.2564 4	- 94.32477	1	CARYTOWN	592	Straight
JASPER	CRD HARMONY RD E	0.695	OUT OF CONTROL	3/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	174 5	37.1695 1	- 94.25649	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	MO 43 S	43.362	OUT OF CONTROL	4/14/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	943	37.2243 6	- 94.50794	1	NON-CITY OR UNINCORPORATED	3372	Straight
JASPER	LP 49 S	13.486	RIGHT TURN	4/13/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	114 0	37.0733 8	- 94.47768	2	JOPLIN	3192 5	Straight
JASPER	RT FF E	3.029	LEFT TURN	1/2/2021 0:00	SER. INJURY	DAYLIGHT	SNO W	SNOW	SAT	141 8	37.0548 1	- 94.46014	3	JOPLIN	1294 0	Straight
JASPER	IS 44 E	25.371	OUT OF CONTROL	4/17/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	RAIN	SAT	510	37.0800 8	- 94.18771	1	NON-CITY OR UNINCORPORATED	3291 6	Straight
JASPER	MO 66 E	6.469	PASSING	4/18/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SUN	154	37.0838 5	- 94.50366	2	JOPLIN	1808 4	Straight
JASPER	CRD CHAPEL RD S	1.609	OUT OF CONTROL	6/12/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	141 5	37.0897 3	- 94.34832	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	MO 43 S	49.98	OUT OF CONTROL	6/1/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	193 0	37.1288 1	- 94.51132	1	AIRPORT DRIVE	1489 3	Straight
JASPER	CST LAUREL ST E	0.002	PARKING OR PARKED CAR	5/14/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	122 2	37.1025 9	- 94.49351	2	JOPLIN		Straight
JASPER	CST W 20TH ST E	5.733	LEFT TURN	5/14/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	841	37.0695	- 94.51411	2	JOPLIN	1204 9	Straight
JASPER	RT FF E	0.603	REAR END	5/13/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	151 5	37.0549 5	- 94.50396	2	JOPLIN	2019 8	Straight
JASPER	MO 43 S	48.778	AVOIDING	5/27/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	RAIN	THU	160 0	37.1460 5	- 94.51059	2	AIRPORT DRIVE	7917	Straight
JASPER	CRD SCHIFFERDECKER AVE S	0.496	PEDESTRIAN	5/9/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	211 5	37.1076 3	- 94.54522	1	NON-CITY OR UNINCORPORATED	5662	Straight
JASPER	CRD IVY RD E	1.638	HEAD ON	5/25/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	125 0	37.1826 9	- 94.20666	2	NON-CITY OR UNINCORPORATED		Straight
JASPER	MO 171 S	11.762	SIDESWIPE	5/30/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	841	37.1793 6	- 94.54319	3	CARL JUNCTION	6701	Straight

JASPER	MO 171 S	13.996	LEFT TURN	6/15/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	163 5	37.1510 9	- 94.52535	2	CARL JUNCTION	1698 8	Straight
JASPER	LP 49 S	9.743	LEFT TURN	6/6/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	162 9	37.1276 2	- 94.47545	2	WEBB CITY	2005 7	Straight
JASPER	RT HH E	6.355	HEAD ON	7/9/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	202 5	37.1402 5	- 94.32278	2	NON-CITY OR UNINCORPORATED	7216	Straight
JASPER	MO 171 S	11.664	OUT OF CONTROL	8/14/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	55	37.1807 5	- 94.54342	1	CARL JUNCTION	6701	Curve
JASPER	MO 66 E	5.367	REAR END	8/19/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	163 8	37.0843 2	- 94.52356	2	JOPLIN	1496 1	Straight
JASPER	CST W 20TH ST E	4.956	SIDESWIPE	6/25/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	212 3	37.0698 3	- 94.52815	3	JOPLIN	1062 1	Straight
JASPER	CRD FIR RD E	3.694	HEAD ON	5/23/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	143 0	37.1435 8	- 94.54131	2	CARL JUNCTION	8392	Straight
JASPER	MO 59 S	2.178	U - TURN	8/6/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	115 9	37.0534 3	- 94.31347	2	NON-CITY OR UNINCORPORATED	7661	Straight
JASPER	CRD IVY RD E	6.855	OUT OF CONTROL	2/24/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	551	37.1855 6	- 94.49416	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	LP 49 S	12.734	LEFT TURN	2/6/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	RAIN	WED	212 9	37.0842 7	- 94.47725	3	JOPLIN	3031 4	Straight
JASPER	MO 171 N	1.67	LEFT TURN	4/23/2019 0:00	SER. INJURY	OTHER	WET	CLOUDY	TUE	200 7	37.1805 8	- 94.36279	3	NON-CITY OR UNINCORPORATED	1514 5	Straight
JASPER	CST E ZORA ST E	1.428	LEFT TURN	1/7/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	125 7	37.1129	- 94.48443	2	JOPLIN	1178 7	Straight
JASPER	IS 44 E	29.156	REAR END	3/23/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	140 5	37.0784 6	- 94.11919	2	NON-CITY OR UNINCORPORATED	2718 5	Straight
JASPER	CST MICHIGAN AVE S	0.531	OUT OF CONTROL	3/16/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	213 2	37.0868 1	-94.5003	1	JOPLIN		Straight
JASPER	CST DUQUESNE RD S	1.844	HEAD ON	5/4/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	155 5	37.0857	- 94.45904	3	DUQUESNE	1039 8	Straight
JASPER	RT AA S	3.873	OUT OF CONTROL	8/3/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	SAT	221	37.1116 2	- 94.38677	1	NON-CITY OR UNINCORPORATED	482	Curve
JASPER	RT YY E	1.785	HEAD ON	5/14/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	153 1	37.1813 1	- 94.58594	2	NON-CITY OR UNINCORPORATED	1311	Curve
JASPER	CST ST LOUIS ST S	3.043	REAR END	9/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	105 9	37.0836 9	- 94.49511	2	JOPLIN	8085	Straight
JASPER	CRD E CHESTNUT E	0.048	OUT OF CONTROL	5/22/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	161 3	37.1727 4	- 94.29058	2	NON-CITY OR UNINCORPORATED		Straight
JASPER	CRD CENTRAL CITY RD S	1.119	RIGHT ANGLE	5/24/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	125 0	37.0856 2	- 94.58334	2	NON-CITY OR UNINCORPORATED	1854	Straight
JASPER	IS 44 E	27.271	RIGHT ANGLE	8/23/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	FRI	612	37.0792 7	- 94.15332	2	NON-CITY OR UNINCORPORATED	2718 5	Straight
JASPER	CST OAK ST E	1.114	OUT OF CONTROL	3/20/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	35	37.1764 5	- 94.31634	1	CARTHAGE	1937	Straight

ASPER	CST GRAND ST S	0.949	PEDALCYCLE	10/12/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	180 0	37.0644 2	- 94.50999	2	JOPLIN		Straight
ASPER	MO 59 N	45.891	OUT OF CONTROL	8/29/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	191 0	37.0765 3	- 94.31252	1	FIDELITY	7544	Straight
ASPER	CST 2ND ST E	1.872	PEDALCYCLE	4/16/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	111 6	37.0896 9	- 94.51487	2	JOPLIN	4522	Straight
ASPER	MO 37 S	26.426	OUT OF CONTROL	11/14/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	630	37.0720 2	- 94.14833	1	SARCOXIE	3384	Straight
ASPER	MO 171 S	3.49	OUT OF CONTROL	11/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	131 5	37.2856 9	- 94.60713	1	NON-CITY OR UNINCORPORATED	7798	Curve
ASPER	CST 4TH ST E	2.303	OUT OF CONTROL	4/8/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	153 5	37.0875 3	- 94.50713	1	JOPLIN	6744	Straight
ASPER	CST SCHIFFERDECKER AVE S	2.553	REAR END	10/4/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	130 1	37.0627 9	- 94.54992	3	JOPLIN	1274 1	Straight
ASPER	LP 49 S	14.58	PEDESTRIAN	3/30/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	210 4	37.0575	- 94.47828	1	JOPLIN	2740 3	Straight
ASPER	CST FLORIDA AVE S	1.201	OUT OF CONTROL	5/6/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	211 4	37.0955 1	- 94.48567	1	JOPLIN	6914	Curve
ASPER	RT P E	6.479	HEAD ON	7/30/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	142 9	37.0864 4	- 94.54894	2	JOPLIN	9257	Straight
ASPER	CST W 20TH ST E	5.105	RIGHT ANGLE	7/9/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	153 3	37.0697 8	- 94.52544	2	JOPLIN	1062 6	Straight
ASPER	MO 66 E	9.194	HEAD ON	1/19/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	SAT	110	37.0837 7	- 94.45438	2	NON-CITY OR UNINCORPORATED	1325 1	Straight
ASPER	IS 44 W	264.94 2	OUT OF CONTROL	1/26/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	133 8	37.0791 3	- 94.13614	1	NON-CITY OR UNINCORPORATED	2718 5	Straight
ASPER	MO 171 S	20.772	REAR END	11/29/201 9 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	FRI	725	37.1565 5	- 94.41803	2	NON-CITY OR UNINCORPORATED	1678 7	Straight
ASPER	RT D E	8.039	AVOIDING	7/15/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	171 5	37.2387 6	- 94.43142	1	PURCELL	940	Straight
ASPER	MO 66 E	12.049	REAR END	10/21/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	154 0	37.0831	- 94.40276	2	NON-CITY OR UNINCORPORATED	4635	Straight
ASPER	CST BROADWAY ST E	0.324	OUT OF CONTROL	10/5/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	184 4	37.0919 1	- 94.50713	1	JOPLIN	4878	Straight
ASPER	CRD KAFIR RD E	2.194	OUT OF CONTROL	8/20/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	131 5	37.2170 8	- 94.57841	1	NON-CITY OR UNINCORPORATED	137	Curve
ASPER	CST 9TH ST E	0.126	RIGHT ANGLE	8/24/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	134 1	37.0821 8	- 94.54186	2	JOPLIN		Straight
ASPER	IS 44 W	267.16 5	OTHER	6/13/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	140 0	37.0801	- 94.17635	1	NON-CITY OR UNINCORPORATED	3291 6	Straight
ASPER	MO 171 S	6.554	HEAD ON	8/28/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	130 5	37.2464 4	- 94.58431	2	NON-CITY OR UNINCORPORATED	8078	Straight
ASPER	MO 571 S	3.651	RIGHT ANGLE	8/31/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	190 0	37.1439 8	- 94.31041	2	CARTHAGE	1157 1	Straight

JASPER	CST W FAIRVIEW AVE E	0.221	LEFT TURN RIGHT ANGLE COLLISION	11/5/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	163 0	37.1547 8	- 94.33312	2	CARTHAGE	9188	Straight
JASPER	CRD MAPLE RD E	1.4	DEER	9/11/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	215 0	37.2456 5	- 94.57056	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	CST PERKINS ST E	0.39	OUT OF CONTROL	9/16/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	121 4	37.0954 7	- 94.54388	1	JOPLIN	1647	Straight
JASPER	MO 37 S	26.147	HEAD ON	3/12/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	0	37.0722 5	- 94.15336	2	SARCOXIE	3212	Straight
JASPER	CST 15TH ST E	2.002	RIGHT ANGLE	3/14/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	CLOUDY	SAT	230 2	37.0744	- 94.49071	2	JOPLIN	7250	Straight
JASPER	CST 15TH ST E	2.721	LEFT TURN	2/26/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	195 1	37.0740 7	- 94.47768	2	JOPLIN	7250	Straight
JASPER	LP 49 S	14.303	PEDESTRIAN	1/30/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	152 0	37.0615 3	- 94.47815	1	JOPLIN	2458 0	Straight
JASPER	CST LONE ELM RD S	1.585	OUT OF CONTROL	4/16/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	355	37.1231 6	- 94.52565	1	NON-CITY OR UNINCORPORATED		Curve
JASPER	N OR 44 E	0.446	OUT OF CONTROL	5/2/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	114 9	37.0818 7	-94.25	1	NON-CITY OR UNINCORPORATED	1160	Straight
JASPER	RT M E	16.098	OUT OF CONTROL	8/14/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	235	37.2965 1	- 94.31944	1	NON-CITY OR UNINCORPORATED	1301	Straight
JASPER	CRD FIR RD E	0.253	HEAD ON	2/27/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	154 7	37.1453	-94.6036	2	NON-CITY OR UNINCORPORATED	7291	Curve
JASPER	CRD 90 S	1.21	OUT OF CONTROL	3/10/2020 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	TUE	728	37.1574	- 94.21905	1	NON-CITY OR UNINCORPORATED	403	Straight
JASPER	RT D E	8.057	REAR END	1/28/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	171 9	37.2387 5	-94.4311	3	PURCELL	1037	Straight
JASPER	RT O S	8.33	U - TURN	9/14/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	163 5	37.2384 3	- 94.41774	1	ALBA	1576	Straight
JASPER	LP 49 S	9.417	LEFT TURN	10/11/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	145 2	37.1323 4	- 94.47519	2	WEBB CITY	2005 7	Straight
JASPER	CRD 170 S	1.613	OUT OF CONTROL	10/21/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	183 0	37.1534 1	- 94.36593	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	N OR 44 E	0.892	OUT OF CONTROL	10/1/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	820	37.0826 4	- 94.34704	1	NON-CITY OR UNINCORPORATED	1355	Straight
JASPER	MO 66 E	2.064	LEFT TURN	4/26/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	815	37.0853 6	- 94.58331	2	NON-CITY OR UNINCORPORATED	1418 7	Straight
JASPER	MO 43 S	36.806	HEAD ON	7/6/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	758	37.3133 3	-94.4855	2	NON-CITY OR UNINCORPORATED	1694	Straight
JASPER	RT D E	3.322	OUT OF CONTROL	6/19/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	151 8	37.1847 1	- 94.45529	1	ORONOGO	2186	Curve
JASPER	CST JUNGE BLVD W	0.346	PASSING	6/25/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	184 3	37.0771	- 94.52221	2	JOPLIN	2116	Straight
JASPER	CST MAIDEN LANE S	0.898	OUT OF CONTROL	7/21/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	133 2	37.0771 5	- 94.53149	2	JOPLIN	1065 5	Straight

JASPER	CST MCGREGOR ST S	0.692	PEDESTRIAN	8/7/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	182 4	37.1750 5	- 94.31573	1	CARTHAGE		Straight
JASPER	IS 44 E	27.911	REAR END	6/19/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	175 5	37.0790 1	- 94.14173	3	NON-CITY OR UNINCORPORATED	2414 1	Straight
JASPER	CRD W ZORA ST E	0.68	OUT OF CONTROL	6/6/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	233 7	37.1142 7	- 94.53151	1	NON-CITY OR UNINCORPORATED	6503	Straight
JASPER	RT M E	3.035	PEDESTRIAN	8/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	631	37.3042 4	- 94.55639	1	NON-CITY OR UNINCORPORATED	444	Straight
JASPER	MO 43 S	38.016	OUT OF CONTROL	6/28/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	300	37.2959 3	- 94.48755	1	NON-CITY OR UNINCORPORATED	2930	Straight
JASPER	CRD 100 S	6.57	OUT OF CONTROL	8/2/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	14	37.1993 4	- 94.23593	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	CST MAIN ST S	2.146	RIGHT ANGLE	8/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	111 2	37.1547 4	- 94.31168	2	CARTHAGE	2796	Straight
JASPER	CST JOPLIN AVE S	1.686	LEFT TURN	8/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	105 9	37.0741 1	- 94.51506	2	JOPLIN	3060	Straight
JASPER	CST S RIVER ST S	2.377	AVOIDING	8/28/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	212 8	37.1438 7	- 94.30141	1	CARTHAGE	16	Straight
JASPER	RT FF E	1.845	RIGHT ANGLE	8/10/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	847	37.0548 6	- 94.48151	2	JOPLIN	1906 1	Straight
JASPER	IS 44 E	27.427	REAR END	9/4/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	132 0	37.0792 1	- 94.15048	2	NON-CITY OR UNINCORPORATED	2414 1	Straight
JASPER	CST ST LOUIS ST S	2.607	PEDESTRIAN	9/6/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	210 2	37.0900 1	- 94.49483	1	JOPLIN	6416	Straight
JASPER	CST E 20TH ST E	0.076	REAR END	9/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	900	37.0694 5	- 94.51273	2	JOPLIN	1327 3	Straight
JASPER	MO 43 S	54.606	RIGHT ANGLE	8/24/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	649	37.0622 6	-94.5145	3	JOPLIN	1273 9	Straight
JASPER	CRD 20TH ST E	0.563	LEFT TURN RIGHT ANGLE COLLISION	4/30/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	184 0	37.0691 5	- 94.44149	2	DUQUESNE	1897	Straight
JASPER	CST WALL AVE N	1.38	RIGHT ANGLE	9/28/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	735	37.0750 7	- 94.51608	2	JOPLIN	3113	Straight
JASPER	MO 43 S	51.531	OUT OF CONTROL	10/1/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	222 5	37.1068 3	- 94.51243	1	JOPLIN	1233 9	Curve
JASPER	RT M E	14.996	OUT OF CONTROL	9/20/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	135 0	37.2969 5	- 94.33944	1	NON-CITY OR UNINCORPORATED	1106	Straight
JASPER	RT FF E	3.037	LEFT TURN	10/21/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	165 1	37.0548 1	- 94.45999	2	JOPLIN	1189 4	Straight
JASPER	CST DUQUESNE RD S	0.835	OUT OF CONTROL	11/9/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	182 1	37.1002 9	- 94.45818	1	JOPLIN	9794	Straight
JASPER	MO 43 S	53.004	PEDALCYCLE	11/8/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	150 7	37.0854 8	- 94.51343	2	JOPLIN	1233 9	Straight
JASPER	IS 44 E	26.746	REAR END	10/30/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	202 0	37.0794 9	- 94.16282	2	NON-CITY OR UNINCORPORATED	2414 1	Straight

JASPER	CST PERKINS ST E	1.09	LEFT TURN	10/31/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	184 0	37.0953 7	- 94.53119	2	JOPLIN		Straight
JASPER	CST WALL AVE N	1.38	RIGHT ANGLE	11/4/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	WED	203 8	37.0750 7	- 94.51608	2	JOPLIN	3113	Straight
JASPER	CST MAIDEN LANE S	1.294	RIGHT ANGLE	11/2/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	151 5	37.0714 2	- 94.53174	2	JOPLIN	1065 5	Straight
JASPER	MO 96 E	13.051	REAR END	4/22/2020 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	WED	160 6	37.1788	- 94.33435	2	CARTHAGE	1564 4	Straight
JASPER	IS 44 W	281.97 2	OUT OF CONTROL	1/5/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	141 8	37.0577 9	- 94.43832	1	JOPLIN	3828 8	Straight
JASPER	MO 66 E	7.453	OUT OF CONTROL	7/22/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	145 0	37.0837 9	- 94.48583	1	JOPLIN	1580 6	Straight
JASPER	LP 49 S	13.781	PEDESTRIAN	12/1/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	TUE	184 9	37.0690 8	- 94.47786	2	JOPLIN	2458 0	Straight
JASPER	RT M E	3.189	OUT OF CONTROL	10/10/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	205 0	37.3041 4	- 94.55359	1	NON-CITY OR UNINCORPORATED	444	Straight
JASPER	MO 96 E	14.182	LEFT TURN RIGHT ANGLE COLLISION	8/14/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	104 6	37.1786 9	- 94.31389	2	CARTHAGE	1118 6	Straight
JASPER	MO 66 E	4.951	LEFT TURN	11/7/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	154 3	37.0845 8	-94.5311	2	JOPLIN	1193 5	Straight
JASPER	MO 66 E	6.53	RIGHT ANGLE	9/22/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	121 5	37.0838 3	- 94.50255	8	JOPLIN	1662 1	Straight
JASPER	MO 66 E	6.531	RIGHT ANGLE	9/17/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	212 2	37.0838 3	- 94.50253	2	JOPLIN	1662 1	Straight
JASPER	CST 4TH ST E	0.798	PARKING OR PARKED CAR	12/19/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	184 1	37.0882 7	- 94.53435	2	JOPLIN	2588	Straight
JASPER	RT Z E	2.12	PEDALCYCLE	12/1/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLOUDY	TUE	181 6	37.1765 2	- 94.55249	2	CARL JUNCTION	5193	Straight
JASPER	RT FF E	0.512	HEAD ON	12/28/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	203 2	37.0549 7	- 94.50561	2	JOPLIN	1856 4	Straight
JASPER	CST E 20TH ST E	2.483	HEAD ON	10/23/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	RAIN	FRI	542	37.0695	- 94.46931	2	JOPLIN	1277 9	Straight
JASPER	RT C E	2.849	OUT OF CONTROL	6/16/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	153 5	37.2522 6	- 94.07407	1	NON-CITY OR UNINCORPORATED	74	Straight
JASPER	CST GRAND ST S	1.362	OUT OF CONTROL	10/17/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	175 4	37.0584 4	-94.5103	2	JOPLIN		Straight
JASPER	RT E E	3.941	OUT OF CONTROL	9/6/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	120 0	37.1544 6	- 94.24323	1	NON-CITY OR UNINCORPORATED	1995	Straight
JASPER	CST W 20TH ST E	5.426	OUT OF CONTROL	10/2/2021 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	SAT	102 0	37.0696 6	- 94.51962	1	JOPLIN	1204 9	Straight
JASPER	RT N E	0.667	SIDESWIPE	11/26/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	142 8	37.2958 1	- 94.29221	2	NON-CITY OR UNINCORPORATED	966	Straight
JASPER	MO 96 E	18.236	OUT OF CONTROL	4/17/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	104 9	37.1981 8	- 94.25081	1	NON-CITY OR UNINCORPORATED	5043	Straight

JASPER	RT D E	2.425	LEFT TURN	1/19/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	215 5	37.1718 5	- 94.45508	2	NON-CITY OR UNINCORPORATED	2300	Curve
JASPER	MO 171 S	16.601	LEFT TURN RIGHT ANGLE COLLISION	12/24/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	123 8	37.1418 9	- 94.48451	2	WEBB CITY	1589 1	Straight
JASPER	CST MAIDEN LANE S	0.239	OUT OF CONTROL	5/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	195 0	37.0866 9	- 94.53106	1	JOPLIN	5546	Straight
JASPER	RT FF E	4.686	PASSING	7/21/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	143 5	37.0545 4	- 94.43054	2	JOPLIN	1080 2	Straight
JASPER	MO 43 S	37.616	RIGHT ANGLE	3/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	154 8	37.3016	- 94.48611	2	NON-CITY OR UNINCORPORATED	3058	Straight
JASPER	MO 43 N	47.537	REAR END	1/2/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	172 0	37.1163 8	- 94.50992	2	JOPLIN	1810 0	Curve
JASPER	RT JJ S	2.518	RIGHT ANGLE	11/14/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	830	37.1448 1	- 94.58118	2	NON-CITY OR UNINCORPORATED	3546	Straight
JASPER	CST 12TH ST E	0.084	RIGHT ANGLE	11/18/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	153 6	37.0784 9	- 94.54201	2	JOPLIN		Straight
JASPER	CST E 30TH ST E	0.325	PEDESTRIAN	8/27/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	195 9	37.0566 4	- 94.49151	1	JOPLIN		Straight
JASPER	RT O S	10.054	OUT OF CONTROL	12/27/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	150 0	37.2134 3	- 94.41843	1	NON-CITY OR UNINCORPORATED	1576	Straight
JASPER	MO 171 N	4.629	HEAD ON	2/28/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	ICE	FREEZING	THU	232	37.1622 4	- 94.40932	2	NON-CITY OR UNINCORPORATED	1678 7	Straight
JASPER	MO 96 E	18.95	HEAD ON	10/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	700	37.198	- 94.23787	2	NON-CITY OR UNINCORPORATED	4786	Straight
JASPER	MO 96 E	20.063	LEFT TURN	10/20/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	182 0	37.1975 3	- 94.21768	2	NON-CITY OR UNINCORPORATED	5121	Straight
JASPER	RT BB S	0.399	OUT OF CONTROL	12/15/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	101 0	37.2876 1	- 94.19692	1	NON-CITY OR UNINCORPORATED	764	Straight
JASPER	MO 66 W	11.445	RIGHT ANGLE	10/23/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	130 0	37.0850 9	- 94.56691	2	NON-CITY OR UNINCORPORATED	1337 1	Straight
JASPER	MO 37 S	18.732	OUT OF CONTROL	11/27/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	130 5	37.1622 4	- 94.14929	1	NON-CITY OR UNINCORPORATED	456	Straight
JASPER	CRD 90 S	0	OUT OF CONTROL	8/26/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	0	37.1749 5	- 94.21856	1	NON-CITY OR UNINCORPORATED	412	Curve
JASPER	CRD CEDAR RD E	0.975	OTHER	10/20/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	182 0	37.0967 5	- 94.29605	1	NON-CITY OR UNINCORPORATED	146	Straight
JASPER	CST BRIARBROOK DR S	0.097	OUT OF CONTROL	8/8/2019 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	THU	122 5	37.1631 7	- 94.55682	1	CARL JUNCTION		Curve
JASPER	CRD 95 S	0.394	OUT OF CONTROL	6/5/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	112 7	37.2427 4	- 94.22547	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	LP 49 S	12.276	OUT OF CONTROL	10/18/201 9 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	513	37.0909	- 94.47695	1	JOPLIN	2146 3	Straight
JASPER	MO 66 E	11.964	U - TURN	11/15/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	183 6	37.0831 4	-94.4043	2	DUENWEG	5111	Straight

JASPER	MO 43 S	36.416	OUT OF CONTROL	4/8/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	161 5	37.3189 8	- 94.48524	1	NON-CITY OR UNINCORPORATED	1769	Straight
JASPER	CST LONE ELM RD S	2.513	OUT OF CONTROL	2/7/2019 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	THU	744	37.1098 9	- 94.52582	1	JOPLIN	861	Straight
JASPER	RT D E	15.302	OUT OF CONTROL	7/8/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	800	37.2274 3	- 94.31237	1	CARYTOWN	304	Straight
JASPER	RT E E	0.999	LEFT TURN RIGHT ANGLE COLLISION	11/6/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	134 0	37.1546 6	-94.2965	2	CARTHAGE	4613	Straight
JASPER	MO 96 E	20.691	HEAD ON	8/20/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	100 0	37.1972 4	- 94.20631	2	NON-CITY OR UNINCORPORATED	5043	Straight
JASPER	RT U S	10.474	HEAD ON	6/18/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	171 0	37.0776 3	- 94.10523	2	SARCOXIE	486	Straight
JASPER	MO 66 E	5.367	PEDALCYCLE	9/20/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	200 5	37.0843 2	- 94.52356	2	JOPLIN	1496 9	Straight
JASPER	RT HH E	6.668	PEDALCYCLE	6/18/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	112 4	37.1402 7	- 94.31711	3	CARTHAGE	6730	Straight
JASPER	CRD 20TH ST E	0.65	RIGHT TURN	6/23/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	134 2	37.0691 2	- 94.43992	2	DUQUESNE	2347	Straight
JASPER	RT TT E	1.006	LEFT TURN RIGHT ANGLE COLLISION	5/31/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	105 3	37.0979 5	- 94.45846	2	JOPLIN	4011	Straight
JASPER	RT FF E	1.021	AVOIDING	6/14/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	121 1	37.0548 8	- 94.49641	2	JOPLIN	2224 8	Straight
JASPER	MO 66 E	7.501	PEDESTRIAN	7/28/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	195 1	37.0838	- 94.48496	1	JOPLIN	1645 0	Straight
JASPER	MO 66 W	12.337	RIGHT ANGLE	5/2/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	145 0	37.0855 8	- 94.58305	2	NON-CITY OR UNINCORPORATED	1450 2	Straight
JASPER	MO 66 E	2.97	RIGHT ANGLE	7/28/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	193 5	37.0848 5	- 94.56692	2	NON-CITY OR UNINCORPORATED	1178 1	Straight
JASPER	MO 96 E	27.539	OUT OF CONTROL	8/8/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	212 0	37.1942 7	-94.0822	1	NON-CITY OR UNINCORPORATED	4396	Straight
JASPER	IS 44 W	266.50 5	AVOIDING	7/3/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	711	37.0798 4	- 94.16442	1	SARCOXIE	3115 9	Straight
JASPER	RT P E	6.534	SIDESWIPE	6/9/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	164 3	37.0856 4	- 94.54897	2	JOPLIN	1039 4	Straight
JASPER	CRD 230 S	0.038	HEAD ON	8/22/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	175 0	37.1844 8	- 94.47224	2	ORONOGO		Curve
JASPER	IS 44 W	270.49 1	OTHER	5/12/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	165 0	37.0814 4	- 94.23653	1	NON-CITY OR UNINCORPORATED	3388 6	Straight
JASPER	LP 49 S	11.775	RIGHT ANGLE	8/27/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	142 6	37.0981 7	- 94.47669	2	JOPLIN	2724 3	Straight
JASPER	RT E E	8.358	OTHER	8/8/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	815	37.1462	- 94.16526	2	NON-CITY OR UNINCORPORATED	1088	Straight
JASPER	CRD E ZORA ST E	0.776	OUT OF CONTROL	7/14/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	124 0	37.1122 2	- 94.43901	1	NON-CITY OR UNINCORPORATED	5893	Straight

JASPER	IS 44 W	262.76 4	REAR END	7/9/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	221 0	37.0781 7	- 94.09676	2	NON-CITY OR UNINCORPORATED	3329 6	Straight
JASPER	CRD APPLE RD E	4.585	OTHER	7/31/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	MON	347	37.0678 9	- 94.32122	1	NON-CITY OR UNINCORPORATED	910	Straight
JASPER	CST E 20TH ST E	3.318	REAR END	8/3/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	455	37.0692 6	- 94.45436	2	DUQUESNE	5365	Straight
JASPER	CST E ZORA ST E	1.103	PEDESTRIAN	8/6/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	847	37.1131 3	- 94.49028	1	JOPLIN	1200 6	Straight
JASPER	CST PRIGMOR AVE S	2.772	HEAD ON	9/3/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	173 6	37.0577 5	- 94.40535	2	JOPLIN	4428	Straight
JASPER	MO 571 S	1.901	RIGHT ANGLE	9/19/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	945	37.1674	-94.3143	2	CARTHAGE	7498	Straight
JASPER	MO 66 E	6.869	PEDALCYCLE	9/9/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	103 5	37.0838 7	- 94.49641	2	JOPLIN	1826 3	Straight
JASPER	MO 96 E	14.157	PEDESTRIAN	10/21/202 3 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	172 2	37.1787	- 94.31433	1	CARTHAGE	1218 3	Straight
JASPER	CRD 110 S	1.957	OUT OF CONTROL	8/15/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	182 0	37.1410 4	- 94.25655	1	NON-CITY OR UNINCORPORATED		Straight
JASPER	RT D E	3.268	OUT OF CONTROL	10/26/202 3 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	234 9	37.1840 5	- 94.45477	1	ORONOGO	2408	Curve
JASPER	RTEE	2.182	LEFT TURN RIGHT ANGLE COLLISION	10/24/202 3 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	TUE	170 0	37.1546	- 94.27507	2	NON-CITY OR UNINCORPORATED	1088	Straight
JASPER	LP 49 S	11.775	LEFT TURN	10/8/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	172 6	37.0981 7	- 94.47669	2	JOPLIN	2724 3	Straight
JASPER	MO 66 E	13.912	OUT OF CONTROL	10/7/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	135	37.0827 6	- 94.36908	1	NON-CITY OR UNINCORPORATED	3761	Straight
JASPER	CST 10TH ST E	0.622	PEDESTRIAN	11/13/202 3 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	150 5	37.0802 8	- 94.46614	1	DUQUESNE		Straight
JASPER	RT M E	16.901	HEAD ON	11/24/202 3 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	842	37.2961 7	- 94.30487	2	NON-CITY OR UNINCORPORATED	1311	Straight
JASPER	MO 96 E	3.795	RIGHT ANGLE	11/26/202 3 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	133 5	37.1999 3	-94.4906	2	NON-CITY OR UNINCORPORATED	648	Straight
JASPER	RP MO249S TO IS44W W	0.064	OUT OF CONTROL	12/25/202 3 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	MON	105 0	37.0623 1	- 94.42754	1	JOPLIN	4243	Curve
JASPER	IS 49 S	122.61 7	OUT OF CONTROL	6/29/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	142 5	37.2681 2	- 94.30637	3	NON-CITY OR UNINCORPORATED	1926 9	Straight
JASPER	IS 49 S	134.35 5	OUT OF CONTROL	8/22/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	175 0	37.1247 9	- 94.31101	1	NON-CITY OR UNINCORPORATED	1976 6	Straight
MCDONAL D	IS 49 S	177.26 7	RIGHT ANGLE	7/22/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	RAIN	MON	10	36.5899 4	- 94.40043	2	PINEVILLE	1087 5	Straight
MCDONAL D	MO 90 E	1.944	OUT OF CONTROL	3/28/2022 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	MON	193 5	36.5338 2	- 94.56386	1	NON-CITY OR UNINCORPORATED	3280	Curve
MCDONAL D	RT NN E	1.345	HEAD ON	11/22/202 2 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	163 8	36.6804 7	- 94.41863	2	NON-CITY OR UNINCORPORATED	580	Curve

MCDONAL D	RT C E	5.838	OUT OF CONTROL	11/7/2022 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	MON	160 0	36.7289 5	- 94.32227	1	NON-CITY OR UNINCORPORATED	525	Curve
MCDONAL D	RT E S	13.143	HEAD ON	11/20/202 2 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SUN	145 9	36.5219 6	- 94.17926	2	NON-CITY OR UNINCORPORATED	1507	Straight
MCDONAL D	MO 59 S	31.591	HEAD ON	8/20/2022 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SAT	825	36.6760 7	- 94.44143	2	NON-CITY OR UNINCORPORATED	5648	Straight
MCDONAL D	US 71 N	6.933	HEAD ON	9/6/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	213 5	36.5656 9	- 94.35397	2	PINEVILLE	5602	Curve
MCDONAL D	US 71 N	2.734	LEFT TURN RIGHT ANGLE COLLISION	2/10/2022 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	THU	800	36.5310 5	- 94.29655	2	JANE	1159 9	Straight
MCDONAL D	RT DD S	0	OUT OF CONTROL	6/12/2023 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	MON	120 0	36.6095 9	- 94.51011	1	NON-CITY OR UNINCORPORATED	272	Straight
MCDONAL D	MO 90 E	17.782	OUT OF CONTROL	8/14/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	100	36.5401 6	- 94.34862	1	NON-CITY OR UNINCORPORATED	1031	Curve
MCDONAL D	MO 90 E	0.456	OUT OF CONTROL	7/29/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	143 0	36.5330 8	- 94.58993	1	NON-CITY OR UNINCORPORATED	3507	Straight
MCDONAL D	MO 59 S	29.762	OUT OF CONTROL	8/4/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	817	36.7004	- 94.42888	1	NON-CITY OR UNINCORPORATED	5974	Straight
MCDONAL D	US 71 N	3.091	LEFT TURN RIGHT ANGLE COLLISION	3/13/2019 0:00	FATAL	DARK W/ STREET LIGHTS ON	DRY	CLOUDY	WED	210 2	36.5358 2	- 94.29899	3	JANE	2019 5	Straight
MCDONAL D	MO 90 E	6.024	HEAD ON	7/6/2019 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SAT	152 5	36.5505 8	- 94.50377	2	NON-CITY OR UNINCORPORATED	4063	Straight
MCDONAL D	MO 76 E	9.149	HEAD ON	9/6/2019 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	184 5	36.6473 7	- 94.47532	2	ANDERSON	3506	Straight
MCDONAL D	MO 59 S	25.678	PEDESTRIAN	9/26/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	222 2	36.7574	- 94.41608	1	NON-CITY OR UNINCORPORATED	6205	Straight
MCDONAL D	MO 59 S	43	OTHER	11/8/2019 0:00	FATAL	DARK W/ STREET LIGHTS ON	ICE	CLEAR	FRI	534	36.5467 7	- 94.49182	1	NOEL	5034	Straight
MCDONAL D	US 71 N	8.06	U - TURN	11/13/201 9 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	180 5	36.5662 7	- 94.37374	3	PINEVILLE	1567 7	Straight
MCDONAL D	IS 49 S	176.65 5	OUT OF CONTROL	10/20/202 1 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	132	36.5978 3	- 94.40545	1	PINEVILLE	1295 4	Straight
MCDONAL D	MO 76 E	24.804	HEAD ON	4/23/2021 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	RAIN	FRI	231 0	36.6889 1	- 94.24037	2	NON-CITY OR UNINCORPORATED	1500	Curve
MCDONAL D	CRD PINE TREE DR E	0.629	OUT OF CONTROL	9/24/2021 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	FRI	0	36.5191 1	- 94.16779	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	RT C E	6.045	OUT OF CONTROL	10/7/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	175 0	36.7312 2	- 94.31985	1	NON-CITY OR UNINCORPORATED	610	Straight
MCDONAL D	CRD WHITE OAK RD S	0.793	OUT OF CONTROL	7/27/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	MON	221 5	36.5284 8	- 94.16373	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	MO 59 S	45.357	OUT OF CONTROL	11/14/202 0 0:00	FATAL	DAYLIGHT	WET	CLOUDY	SAT	100 0	36.5147 3	- 94.48302	2	NON-CITY OR UNINCORPORATED	3552	Curve
MCDONAL D	MO 90 E	31.104	OUT OF CONTROL	11/4/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	140 0	36.5542 2	- 94.16527	1	NON-CITY OR UNINCORPORATED	486	Curve

MCDONAL D	US 71 S	316.97 4	LEFT TURN RIGHT ANGLE COLLISION	4/17/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	FRI	141 5	36.5035 6	- 94.27674	2	NON-CITY OR UNINCORPORATED	2068 6	Straight
MCDONAL D	MO 90 E	17.81	OUT OF CONTROL	5/4/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	200	36.5399 9	- 94.34816	1	NON-CITY OR UNINCORPORATED	877	Curve
MCDONAL D	US 71 S	313.10 7	U - TURN	11/15/202 1 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	825	36.5434 9	- 94.31941	2	JANE	1227 4	Straight
MCDONAL D	US 71 N	3.091	LEFT TURN RIGHT ANGLE COLLISION	10/22/202 0 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	152 0	36.5358 2	- 94.29899	2	JANE	1845 8	Straight
MCDONAL D	MO 43 S	93.188	LEFT TURN RIGHT ANGLE COLLISION	6/16/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	222	36.5624 2	-94.5965	2	NON-CITY OR UNINCORPORATED	3534	Straight
MCDONAL D	MO 43 S	79.017	LEFT TURN RIGHT ANGLE COLLISION	2/12/2020 0:00	FATAL	DAYLIGHT	WET	RAIN	WED	134 0	36.7373 4	- 94.60581	2	NON-CITY OR UNINCORPORATED	664	Straight
MCDONAL D	MO 43 S	90.678	HEAD ON	5/1/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	144 5	36.5987 8	- 94.59451	2	NON-CITY OR UNINCORPORATED	4190	Straight
MCDONAL D	MO 90 E	22.605	OUT OF CONTROL	7/11/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	200 6	36.5519 5	- 94.27054	1	NON-CITY OR UNINCORPORATED	968	Curve
MCDONAL D	RT CC E	5.971	OUT OF CONTROL	9/4/2023 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	230 0	36.7360 7	- 94.30055	1	NON-CITY OR UNINCORPORATED	612	Curve
MCDONAL D	MO 43 S	83.867	HEAD ON	10/3/2023 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	TUE	151 9	36.6730 3	- 94.60768	2	NON-CITY OR UNINCORPORATED	905	Curve
MCDONAL D	MO 90 E	29.989	HEAD ON	12/5/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	142 0	36.5515 3	- 94.18206	2	NON-CITY OR UNINCORPORATED	598	Curve
MCDONAL D	IS 49 N	11.629	OUT OF CONTROL	5/27/2021 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	THU	160 0	36.6582 8	-94.4198	2	NON-CITY OR UNINCORPORATED	1206 9	Straight
MCDONAL D	US 71 N	6.413	OUT OF CONTROL	4/3/2020 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	FRI	131 5	36.5622 4	- 94.34576	4	PINEVILLE	1432 9	Straight
MCDONAL D	IS 49 N	5.439	PARKING OR PARKED CAR	10/21/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	110 0	36.5735 3	- 94.38886	2	PINEVILLE	1533 3	Straight
MCDONAL D	IS 49 N	10.365	OUT OF CONTROL	2/5/2020 0:00	SER. INJURY	DAYLIGHT	SLSH	SNOW	WED	843	36.6399 7	- 94.41903	1	NON-CITY OR UNINCORPORATED	1050 9	Straight
MCDONAL D	MO 90 E	14.272	OUT OF CONTROL	1/14/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	135 0	36.5305 8	-94.3967	1	NON-CITY OR UNINCORPORATED	1374	Curve
MCDONAL D	MO 59 S	44.941	OUT OF CONTROL	3/11/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	205 9	36.5200 9	- 94.48637	1	NOEL	3370	Straight
MCDONAL D	RT CC E	9.432	REAR END	5/20/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	181 5	36.7319 2	- 94.23883	2	NON-CITY OR UNINCORPORATED	576	Straight
MCDONAL D	RT O E	0.154	OUT OF CONTROL	5/8/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	1	36.5981 3	-94.615	1	NON-CITY OR UNINCORPORATED	2150	Curve
MCDONAL D	CRD BEAR HOLLOW RD E	1.384	OUT OF CONTROL	6/11/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	184 5	36.5049 1	- 94.24597	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	CRD BALL RD E	0.496	OUT OF CONTROL	7/7/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	800	36.6865	- 94.50046	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	MO 59 S	25.851	REAR END	7/15/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	909	36.7548 9	- 94.41621	2	NON-CITY OR UNINCORPORATED	6219	Straight

MCDONAL D	CRD COWAN RDG RD E	1.528	OUT OF CONTROL	7/2/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	100 0	36.6147 2	- 94.23019	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	CRD SHANGHAI RD E	0.68	OUT OF CONTROL	5/18/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	173 0	36.6016 5	- 94.49122	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	MO 90 E	7.626	OUT OF CONTROL	8/3/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	212 0	36.5418 5	- 94.48055	1	NON-CITY OR UNINCORPORATED	1374	Curve
MCDONAL D	CRD DALLAS RD S	0.078	OUT OF CONTROL	8/10/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	224 0	36.6750 6	- 94.49201	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	RT W S	1.705	OUT OF CONTROL	8/27/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	182 5	36.6427 1	-94.3541	1	NON-CITY OR UNINCORPORATED	626	Curve
MCDONAL D	MO 76 E	7.646	OUT OF CONTROL	8/16/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	175 6	36.6501 1	- 94.50171	1	NON-CITY OR UNINCORPORATED	3679	Straight
MCDONAL D	CRD BEAR Hollow RD E	1.405	OUT OF CONTROL	9/27/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	0	36.5048 6	-94.2456	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	RTFE	7.242	OUT OF CONTROL	9/19/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	202 4	36.6598 7	- 94.45964	1	ANDERSON	1271	Curve
MCDONAL D	RT JJ S	0.884	DOG	9/21/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	140 0	36.7078 3	- 94.13169	1	NON-CITY OR UNINCORPORATED	190	Straight
MCDONAL D	MO 90 E	8.723	OUT OF CONTROL	9/20/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	211 5	36.5288 9	-94.4717	1	NON-CITY OR UNINCORPORATED	1374	Curve
MCDONAL D	MO 59 S	46.192	OUT OF CONTROL	9/5/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	156	36.5026 5	- 94.48313	1	NON-CITY OR UNINCORPORATED	3370	Curve
MCDONAL D	US 71 S	311.05 9	OUT OF CONTROL	11/25/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	202 6	36.5621 7	- 94.34596	1	PINEVILLE	5602	Straight
MCDONAL D	CRD FRYE RD E	1.982	OUT OF CONTROL	10/16/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	102 0	36.5067 5	- 94.57722	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	RT NN E	0.123	OUT OF CONTROL	10/29/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	SAT	184 5	36.6755	- 94.43927	1	NON-CITY OR UNINCORPORATED	580	Curve
MCDONAL D	CRD EAST CARTER RD E	1.741	OUT OF CONTROL	11/17/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	175 8	36.7054	- 94.10044	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	MO 59 S	32.105	DOG	12/31/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	123 2	36.6686 4	- 94.44215	1	ANDERSON	8923	Straight
MCDONAL D	MO 43 S	88.416	REAR END	12/13/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	TUE	615	36.6301 7	- 94.58694	2	NON-CITY OR UNINCORPORATED	1399	Curve
MCDONAL D	MO 90 E	29.996	OUT OF CONTROL	11/22/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	202 5	36.5516 2	- 94.18202	2	NON-CITY OR UNINCORPORATED	562	Curve
MCDONAL D	CRD BEAR Hollow RD E	0.951	OUT OF CONTROL	1/6/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	200 0	36.5069 5	- 94.25301	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	MO 90 E	5.321	HEAD ON	2/18/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	220 5	36.5484	- 94.51596	3	NON-CITY OR UNINCORPORATED	4456	Curve
MCDONAL D	RT H E	6.749	OUT OF CONTROL	1/30/2023 0:00	SER. INJURY	DAYLIGHT	SNO W	SNOW	MON	829	36.5825 9	- 94.38736	1	NON-CITY OR UNINCORPORATED	1259	Straight
MCDONAL D	CRD HOLLY RD E	2.264	OUT OF CONTROL	1/21/2023 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	SAT	153 5	36.5249	- 94.56239	1	NON-CITY OR UNINCORPORATED		Straight

Curve	453	NON-CITY OR UNINCORPORATED	1	- 94.09051	36.5772 3	122 5	SUN	CLEAR	DRY	DAYLIGHT	SER. INJURY	3/26/2023 0:00	OUT OF CONTROL	36.808	MO 90 E	MCDONAL D
Curve	4750	NOEL	2	- 94.48991	36.5455 1	430	FRI	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	3/24/2023 0:00	REAR END	43.138	MO 59 S	MCDONAL D
Straight	968	NON-CITY OR UNINCORPORATED	1	- 94.26503	36.5568 6	10	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	2/25/2023 0:00	OUT OF CONTROL	23.085	MO 90 E	MCDONAL D
Curve	453	NON-CITY OR UNINCORPORATED	1	- 94.08162	36.5751 5	134 5	SUN	CLEAR	DRY	DAYLIGHT	SER. INJURY	4/2/2023 0:00	OUT OF CONTROL	37.335	MO 90 E	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.56413	36.5921 5	212 5	MON	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	4/17/2023 0:00	OUT OF CONTROL	2	CRD MANNING RD E	MCDONAL D
Straight	4190	SOUTHWEST CITY	3	- 94.59748	36.5434 8	640	FRI	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	11/17/202 3 0:00	OUT OF CONTROL	94.495	MO 43 S	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.39806	36.7553 8	200 0	SAT	RAIN	WET	DAYLIGHT	SER. INJURY	5/13/2023 0:00	OUT OF CONTROL	0.027	CRD E BRODIE RD E	MCDONAL D
Curve	575	NON-CITY OR UNINCORPORATED	1	- 94.37724	36.5834 2	232 9	WED	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	5/24/2023 0:00	OUT OF CONTROL	0.059	RT K E	MCDONAL D
Straight	4068	NON-CITY OR UNINCORPORATED	1	-94.5979	36.5360 8	113 2	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	11/4/2021 0:00	OUT OF CONTROL	95.006	MO 43 S	MCDONAL D
Straight	3504	SOUTHWEST CITY	2	- 94.59812	36.5333 5	134 0	SUN	CLOUDY	DRY	DAYLIGHT	SER. INJURY	4/11/2021 0:00	RIGHT ANGLE	95.195	MO 43 S	MCDONAL D
Straight	1031	NON-CITY OR UNINCORPORATED	1	- 94.32491	36.5426	105 0	SAT	CLOUDY	DRY	DAYLIGHT	SER. INJURY	4/17/2021 0:00	OUT OF CONTROL	19.183	MO 90 E	MCDONAL D
Straight	1295 4	PINEVILLE	3	- 94.39416	36.5812	161 7	SUN	CLOUDY	WET	DAYLIGHT	SER. INJURY	5/2/2021 0:00	HEAD ON	6.044	IS 49 N	MCDONAL D
Straight	242	NON-CITY OR UNINCORPORATED	1	- 94.54126	36.6841 1	174 9	SUN	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/4/2021 0:00	OUT OF CONTROL	1.578	RTFE	MCDONAL D
Curve	3867	NON-CITY OR UNINCORPORATED	1	- 94.48502	36.6495 5	350	FRI	CLOUDY	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	7/16/2021 0:00	OUT OF CONTROL	8.574	MO 76 E	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.18706	36.6487 9	165 2	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/15/2021 0:00	OUT OF CONTROL	0.88	CRD KINGS RD S	MCDONAL D
Curve		NON-CITY OR UNINCORPORATED	1	- 94.23326	36.5155 2	183 0	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/20/2021 0:00	OUT OF CONTROL	0.585	CRD TYSON RD S	MCDONAL D
Curve	5974	NON-CITY OR UNINCORPORATED	2	- 94.44094	36.6786 5	163 8	MON	CLEAR	WET	DAYLIGHT	SER. INJURY	6/28/2021 0:00	LEFT TURN	31.411	MO 59 S	MCDONAL D
Straight	8495	NOEL	2	-94.4861	36.5452 8	160 7	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/16/2021 0:00	PEDALCYCLE	7.204	MO 90 E	MCDONAL D
Straight	926	PINEVILLE	2	- 94.37469	36.5803 6	212 3	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS ON	SER. INJURY	7/24/2021 0:00	REAR END	11.55	BU 71 S	MCDONAL D
Straight	3689	NON-CITY OR UNINCORPORATED	2	- 94.59571	36.5763 7	220 0	SUN	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/29/201 9 0:00	PASSING	92.225	MO 43 S	MCDONAL D
Curve		NON-CITY OR UNINCORPORATED	1	- 94.60121	36.6388 6	203 0	SAT	CLOUDY	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	1/12/2019 0:00	OUT OF CONTROL	1.965	CRD MORRISON LOOP S	MCDONAL D
Straight	+	NON-CITY OR UNINCORPORATED	1	- 94.49176	36.6316 2	113 0	THU	CLOUDY	DRY	DAYLIGHT	SER. INJURY	4/11/2019 0:00	OUT OF CONTROL	1.315	CRD MONROE RD E	MCDONAL D

Straight	2019 5	JANE	2	- 94.31981	36.5437 6	182 0	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	6/28/2019 0:00	RIGHT ANGLE	4.402	US 71 N	MCDONAL D
Straight	3689	SOUTHWEST CITY	1	- 94.59775	36.5386 7	232 4	SUN	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	11/10/201 9 0:00	OUT OF CONTROL	94.827	MO 43 S	MCDONAL D
Straight	6205	NON-CITY OR UNINCORPORATED	1	- 94.41622	36.7546	153 0	WED	CLEAR	DRY	DAYLIGHT	SER. INJURY	3/27/2019 0:00	OUT OF CONTROL	25.871	MO 59 S	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.61779	36.5423 6	171 0	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/22/201 9 0:00	OUT OF CONTROL	1.815	CRD BLECHA RD S	MCDONAL D
Straight	3078	NON-CITY OR UNINCORPORATED	1	- 94.46905	36.5675 2	183 0	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/14/2019 0:00	OUT OF CONTROL	40.797	MO 59 S	MCDONAL D
Straight	2019 5	JANE	1	- 94.31233	36.5412	920	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/21/201 9 0:00	OUT OF CONTROL	313.53 1	US 71 S	MCDONAL D
Straight	1087 5	PINEVILLE	1	- 94.40093	36.5906 6	10	MON	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	7/22/2019 0:00	OUT OF CONTROL	177.21	IS 49 S	MCDONAL D
Straight	1087 5	PINEVILLE	2	- 94.40052	36.5900 6	900	SUN	RAIN	WET	DAYLIGHT	SER. INJURY	10/6/2019 0:00	OUT OF CONTROL	177.25 7	IS 49 S	MCDONAL D
Straight	1553	NON-CITY OR UNINCORPORATED	1	- 94.27317	36.6745 7	154 0	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	11/8/2019 0:00	PEDESTRIAN	22.674	MO 76 E	MCDONAL D
Curve	2019 5	JANE	1	- 94.30172	36.5382 7	151 5	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	5/11/2019 0:00	OUT OF CONTROL	314.15 6	US 71 S	MCDONAL D
Curve	3506	NON-CITY OR UNINCORPORATED	1	- 94.46859	36.6465 5	222 5	SUN	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	6/30/2019 0:00	OUT OF CONTROL	9.53	MO 76 E	MCDONAL D
Straight	1023 5	NON-CITY OR UNINCORPORATED	2	- 94.41559	36.6229	440	TUE	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/10/201 9 0:00	REAR END	174.83 2	IS 49 S	MCDONAL D
Straight	1087 5	PINEVILLE	2	- 94.40058	36.5901 5	213 0	FRI	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	11/29/201 9 0:00	REAR END	177.25	IS 49 S	MCDONAL D
Curve	422	NON-CITY OR UNINCORPORATED	1	- 94.13669	36.5843 8	210 0	MON	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	8/23/2021 0:00	OUT OF CONTROL	34.133	MO 90 E	MCDONAL D
Curve	674	NON-CITY OR UNINCORPORATED	1	- 94.26884	36.5893 3	850	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/28/2021 0:00	OUT OF CONTROL	7.584	RT K E	MCDONAL D
Curve	603	NON-CITY OR UNINCORPORATED	1	- 94.22271	36.7312	110	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	8/28/2021 0:00	OUT OF CONTROL	10.328	RT CC E	MCDONAL D
Straight	7555	NON-CITY OR UNINCORPORATED	1	- 94.43499	36.6495	818	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/20/2021 0:00	OUT OF CONTROL	12.434	MO 76 E	MCDONAL D
Curve	1772	NON-CITY OR UNINCORPORATED	2	- 94.08597	36.7431 4	210 0	WED	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	2/24/2021 0:00	OUT OF CONTROL	37.006	MO 76 E	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.36154	36.6900 7	211 5	THU	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	3/26/2020 0:00	OUT OF CONTROL	1.478	CRD PEACH ORCHARD E	MCDONAL D
Curve	3552	NON-CITY OR UNINCORPORATED	1	- 94.48313	36.5026 5	101	SUN	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	4/5/2020 0:00	OUT OF CONTROL	46.192	MO 59 S	MCDONAL D
Straight	3044	SOUTHWEST CITY	3	- 94.59812	36.5333 5	222 7	SUN	CLEAR	DRY	DARK - UNKNOWN	SER. INJURY	8/30/2020 0:00	RIGHT ANGLE	95.195	MO 43 S	MCDONAL D
Straight	3534	SOUTHWEST CITY	1	- 94.59809	36.5335	172 5	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	6/11/2020 0:00	OUT OF CONTROL	95.184	MO 43 S	MCDONAL D

MCDONAL D	RT MM S	0.491	OUT OF CONTROL	4/11/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	170 5	36.5289 8	- 94.56211	1	NON-CITY OR UNINCORPORATED	771	Straight
MCDONAL D	CRD HILLTOP RD S	0.162	OUT OF CONTROL	10/9/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	161 0	36.5443 4	- 94.51866	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	RT DD S	0.412	OUT OF CONTROL	11/3/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	213 0	36.6062 5	- 94.50398	1	NON-CITY OR UNINCORPORATED	355	Straight
MCDONAL D	MO 76 E	5.775	OUT OF CONTROL	11/24/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	545	36.6513 3	- 94.53535	1	NON-CITY OR UNINCORPORATED	3867	Straight
MCDONAL D	RT E S	7.661	OUT OF CONTROL	6/28/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	131 0	36.5914 4	- 94.18944	1	NON-CITY OR UNINCORPORATED	2461	Curve
MCDONAL D	CRD WHITE OAK RD S	3.531	OUT OF CONTROL	6/5/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	210 0	36.5228 1	-94.1322	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	MO 90 E	0.17	REAR END	7/4/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	171 9	36.5332 5	- 94.59507	2	NON-CITY OR UNINCORPORATED	3047	Straight
MCDONAL D	CRD SPRING FLOOD RD S	0.227	OUT OF CONTROL	9/13/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	174 5	36.7460 6	- 94.47495	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	MO 76 E	7.476	REAR END	11/20/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	10	36.6502	- 94.50476	2	NON-CITY OR UNINCORPORATED	3359	Straight
MCDONAL D	CRD BEAR HOLLOW RD E	0.239	OUT OF CONTROL	11/10/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	164 8	36.5012 6	- 94.26128	1	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	US 71 S	313.09	REAR END	6/30/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	184 5	36.5435 8	- 94.31969	2	JANE	1845 8	Straight
MCDONAL D	US 71 S	314.38 5	RIGHT ANGLE	9/25/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	161 0	36.5357 7	- 94.29912	2	JANE	1845 8	Curve
MCDONAL D	MO 59 S	38.026	HEAD ON	5/22/2020 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	FRI	645	36.6028	- 94.45922	2	LANAGAN	2921	Curve
MCDONAL D	US 71 S	313.08 2	RIGHT ANGLE	9/19/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	356	36.5436 3	- 94.31982	2	JANE	1845 8	Straight
MCDONAL D	US 71 S	313.07 8	OUT OF CONTROL	9/19/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	355	36.5436 5	- 94.31989	1	JANE	1845 8	Straight
MCDONAL D	US 71 S	314.58 5	OUT OF CONTROL	11/25/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	WED	231 5	36.5331	- 94.29773	1	JANE	1845 8	Straight
MCDONAL D	CRD COWAN RDG RD E	0.051	OUT OF CONTROL	5/27/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	153 0	36.6252 3	-94.2469	1	NON-CITY OR UNINCORPORATED		Curve
MCDONAL D	MO 59 S	27.94	HEAD ON	12/26/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	419	36.7246 2	- 94.41776	2	NON-CITY OR UNINCORPORATED	3553	Curve
MCDONAL D	US 71 N	6.334	OUT OF CONTROL	9/8/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	143 0	36.5618 9	- 94.34441	1	NON-CITY OR UNINCORPORATED	5425	Curve
MCDONAL D	CRD E BRODIE RD E	0.238	OTHER	6/28/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	125 5	36.7552 4	- 94.39425	2	NON-CITY OR UNINCORPORATED		Straight
MCDONAL D	RTHE	1.26	OUT OF CONTROL	12/10/202 1 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	FRI	121 0	36.5560 7	- 94.46889	1	NON-CITY OR UNINCORPORATED	3245	Curve
MCDONAL D	IS 49 S	177.16 8	REAR END	10/6/2019 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	SUN	856	36.5911 9	- 94.40129	2	PINEVILLE	1087 5	Straight

Curve	4283	NON-CITY OR UNINCORPORATED	1	- 94.44563	36.6133	165 0	MON	CLOUDY	DRY	DAYLIGHT	SER. INJURY	1/14/2019 0:00	OUT OF CONTROL	36.706	MO 59 S	MCDONAL D
Straight	1087 5	PINEVILLE	2	- 94.40081	36.5904 9	182 0	SAT	RAIN	WET	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/28/201 9 0:00	OUT OF CONTROL	177.22 3	IS 49 S	MCDONAL D
Curve	1488	NON-CITY OR UNINCORPORATED	1	- 94.31615	36.6602 2	340	THU	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	6/18/2020 0:00	OUT OF CONTROL	20.006	MO 76 E	MCDONAL D
Curve		NON-CITY OR UNINCORPORATED	1	- 94.25913	36.5024 5	161 5	SUN	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/2/2023 0:00	OUT OF CONTROL	0.385	CRD BEAR Hollow RD E	MCDONAL D
Straight		NON-CITY OR UNINCORPORATED	1	- 94.57845	36.7451 6	194 0	WED	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/19/2023 0:00	OUT OF CONTROL	1.382	CRD HOTTEL SPRINGS RD S	MCDONAL D
Straight	6517	NON-CITY OR UNINCORPORATED	1	- 94.41608	36.7574 9	221 5	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	7/22/2023 0:00	OUT OF CONTROL	25.672	MO 59 S	MCDONAL D
Straight	1617 1	NON-CITY OR UNINCORPORATED	1	- 94.42667	36.7584 1	144 0	SUN	FREEZING	ICE	DAYLIGHT	SER. INJURY	1/29/2023 0:00	OUT OF CONTROL	18.626	IS 49 N	MCDONAL D
Curve	1742	NON-CITY OR UNINCORPORATED	1	- 94.18087	36.6104 6	651	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/1/2023 0:00	DEER	6.2	RT E S	MCDONAL D
Curve	537	NON-CITY OR UNINCORPORATED	1	- 94.61268	36.7127 5	920	FRI	RAIN	WET	DAYLIGHT	SER. INJURY	7/14/2023 0:00	OUT OF CONTROL	80.856	MO 43 S	MCDONAL D
Curve	369	NON-CITY OR UNINCORPORATED	1	- 94.12885	36.5618 8	132 0	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/19/2023 0:00	OUT OF CONTROL	0.968	RT KK S	MCDONAL D
Straight		SOUTHWEST CITY	2	- 94.61028	36.5127 9	174 2	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	5/25/2023 0:00	PEDALCYCLE	0.066	CST E COMMANCHE ST E	MCDONAL D
Straight	1462	NON-CITY OR UNINCORPORATED	1	- 94.48089	36.5421	185 4	WED	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/20/2023 0:00	OUT OF CONTROL	7.6	MO 90 E	MCDONAL D
Straight	4456	NON-CITY OR UNINCORPORATED	1	- 94.51539	36.5487 4	190 0	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	11/4/2023 0:00	OUT OF CONTROL	5.36	MO 90 E	MCDONAL D
Straight	3427	PINEVILLE	2	- 94.38879	36.5900 8	154 9	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/20/202 3 0:00	LEFT TURN	10.503	BU 71 S	MCDONAL D
Curve	580	NON-CITY OR UNINCORPORATED	1	- 94.41934	36.6802 3	155 0	SUN	CLOUDY	DRY	DAYLIGHT	SER. INJURY	9/24/2023 0:00	OUT OF CONTROL	1.302	RT NN E	MCDONAL D
Curve	1742	NON-CITY OR UNINCORPORATED	1	- 94.20585	36.6740 8	115 5	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/7/2023 0:00	OUT OF CONTROL	0.945	RT E S	MCDONAL D
Curve	905	NON-CITY OR UNINCORPORATED	1	- 94.59597	36.6665 4	144 5	SUN	CLOUDY	DRY	DAYLIGHT	SER. INJURY	9/24/2023 0:00	OUT OF CONTROL	84.676	MO 43 S	MCDONAL D
Straight	1131 4	NON-CITY OR UNINCORPORATED	1	- 94.41951	36.6429 9	132 0	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/7/2023 0:00	OUT OF CONTROL	173.42 4	IS 49 S	MCDONAL D
Curve	828	NON-CITY OR UNINCORPORATED	2	- 94.60922	36.7674 7	20	SUN	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	FATAL	6/30/2019 0:00	AVOIDING	76.729	MO 43 S	NEWTON
Curve	2018 8	NON-CITY OR UNINCORPORATED	1	- 94.43021	36.8656 5	172 5	WED	CLEAR	DRY	DAYLIGHT	FATAL	11/10/202 1 0:00	OUT OF CONTROL	26.285	IS 49 N	NEWTON
Straight	2540 2	NON-CITY OR UNINCORPORATED	2	-94.4298	36.9511 6	212 5	SUN	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	FATAL	4/5/2020 0:00	PEDALCYCLE	32.187	IS 49 N	NEWTON
Straight	8796	NEOSHO	2	- 94.38934	36.8682 7	908	FRI	CLEAR	DRY	DAYLIGHT	FATAL	7/1/2022 0:00	LEFT TURN	19.171	MO 86 E	NEWTON

NEWTON	CRD COYOTE DR S	2.697	AVOIDING	3/6/2022 0:00	FATAL	DAYLIGHT	WET	RAIN	SUN	160 0	37.0178 5	- 94.54601	2	NON-CITY OR UNINCORPORATED	6651	Curve
NEWTON	CST BAXTER ST E	0.657	REAR END	4/2/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	RAIN	SAT	123	36.88	- 94.38779	2	NEOSHO	1520	Straight
NEWTON	IS 44 E	4.404	PEDESTRIAN	6/5/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	229	37.0128 9	- 94.54165	1	JOPLIN	3775 3	Curve
NEWTON	MO 43 S	63.893	OUT OF CONTROL	5/11/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	172 5	36.9426	- 94.56431	1	NON-CITY OR UNINCORPORATED	8762	Straight
NEWTON	CRD ELDER RD E	1.465	OUT OF CONTROL	7/2/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	210 6	36.9775 6	- 94.40017	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	MO 59 S	5.191	OUT OF CONTROL	6/30/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	164 2	37.0097 5	- 94.31509	1	DIAMOND	7910	Curve
NEWTON	CRD RIVERSIDE DR E	0.88	OUT OF CONTROL	7/16/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	200	37.0367 2	- 94.54098	1	JOPLIN	446	Curve
NEWTON	RT K E	4.669	PEDESTRIAN	7/26/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	410	36.8821 2	- 94.55295	1	NON-CITY OR UNINCORPORATED	851	Curve
NEWTON	IS 44 W	283.99 7	OUT OF CONTROL	11/15/202 2 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	TUE	920	37.0469 9	- 94.47231	1	JOPLIN	3767 3	Straight
NEWTON	MO 43 S	68.792	REAR END	7/4/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	951	36.8762 7	- 94.59602	2	SENECA	7678	Straight
NEWTON	RT H S	2	RIGHT ANGLE	8/10/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	180 5	36.8490 7	- 94.26527	2	NON-CITY OR UNINCORPORATED	255	Straight
NEWTON	BU 60 E	1.059	RIGHT ANGLE	9/7/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	193 4	36.8552 8	- 94.38418	3	NEOSHO	1304 1	Straight
NEWTON	RT AA E	3.891	LEFT TURN	10/31/202 2 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	145 8	36.7889 5	- 94.42263	2	NON-CITY OR UNINCORPORATED	670	Straight
NEWTON	CST DEER DR S	0.936	OUT OF CONTROL	10/15/202 2 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SAT	232 0	37.0215 7	- 94.53469	1	NON-CITY OR UNINCORPORATED	312	Straight
NEWTON	US 60 E	15.821	U - TURN	9/19/2022 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	212 5	36.8556 5	- 94.33879	2	NON-CITY OR UNINCORPORATED	8608	Straight
NEWTON	CRD APRICOT DR E	3.175	OUT OF CONTROL	12/25/202 2 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SUN	152 5	37.0326 3	- 94.56273	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	US 60 E	15.774	LEFT TURN RIGHT ANGLE COLLISION	10/4/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	712	36.8554 1	- 94.33958	2	NON-CITY OR UNINCORPORATED	9566	Straight
NEWTON	MO 86 E	30.54	HEAD ON	7/21/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	705	36.8769 5	- 94.20608	2	NON-CITY OR UNINCORPORATED	2903	Straight
NEWTON	US 60 E	27.232	RIGHT ANGLE	1/24/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	151 0	36.9202 8	- 94.19059	2	NON-CITY OR UNINCORPORATED	3826	Straight
NEWTON	MO 86 E	18.224	REAR END	9/20/2022 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	143 5	36.8797 4	- 94.39822	2	NEOSHO	9518	Curve
NEWTON	MO 86 E	31.319	ANGLE	6/13/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	162 5	36.8767 5	- 94.19201	2	NEWTONIA	3043	Straight
NEWTON	CST S JACKSON AVE S	0.766	OUT OF CONTROL	7/5/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	183 5	37.0443 7	- 94.52187	1	JOPLIN	1281	Curve

Curve		NON-CITY OR UNINCORPORATED	1	- 94.54724	36.8284 8	144 5	THU	CLEAR	DRY	DAYLIGHT	FATAL	6/8/2023 0:00	OUT OF CONTROL	3.456	CRD OLD HWY 60 E	NEWTON
Straight	4442 5	JOPLIN	1	- 94.51276	37.0378 5	133 5	SUN	CLOUDY	DRY	DAYLIGHT	FATAL	8/13/2023 0:00	PEDESTRIAN	286.40 1	IS 44 W	NEWTON
Curve		NON-CITY OR UNINCORPORATED	1	- 94.52637	36.8301 6	210 0	WED	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	FATAL	1/20/2021 0:00	OUT OF CONTROL	4.702	CRD OLD HWY 60 E	NEWTON
Curve	1370	NON-CITY OR UNINCORPORATED	1	-94.47	36.9243 9	184 2	THU	CLEAR	DRY	DAYLIGHT	FATAL	6/10/2021 0:00	OUT OF CONTROL	7.915	RT NN S	NEWTON
Straight	8713	NON-CITY OR UNINCORPORATED	2	- 94.57216	36.9256 1	164 0	MON	CLEAR	DRY	DAYLIGHT	FATAL	7/26/2021 0:00	RIGHT ANGLE	65.142	MO 43 S	NEWTON
Straight	8713	NON-CITY OR UNINCORPORATED	2	- 94.58777	36.8922 4	193 0	TUE	CLEAR	DRY	DAYLIGHT	FATAL	8/10/2021 0:00	HEAD ON	67.6	MO 43 S	NEWTON
Straight	4558 2	JOPLIN	1	- 94.47332	37.0469 3	180 6	WED	CLOUDY	DRY	DAYLIGHT	FATAL	5/1/2019 0:00	PEDESTRIAN	284.05 3	IS 44 W	NEWTON
Straight	5706	NEOSHO	4	- 94.39016	36.8515 1	105 0	FRI	CLEAR	DRY	DAYLIGHT	FATAL	11/8/2019 0:00	RIGHT ANGLE	3.999	LP 49 S	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	- 94.47028	36.9828 4	230	TUE	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	FATAL	6/4/2019 0:00	DEER	0.929	CRD SPURGEON RD S	NEWTON
Straight	701	NON-CITY OR UNINCORPORATED	2	- 94.53812	36.9868 7	145 0	THU	CLEAR	DRY	DAYLIGHT	FATAL	9/26/2019 0:00	RIGHT ANGLE	0.487	RT C S	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	- 94.36473	36.7627 4	174 1	MON	CLOUDY	DRY	DAYLIGHT	FATAL	4/8/2019 0:00	OUT OF CONTROL	2.96	CRD MINK S	NEWTON
Curve	2995	NON-CITY OR UNINCORPORATED	3	- 94.61827	36.8688 4	173 7	FRI	CLEAR	DRY	DAYLIGHT	FATAL	9/6/2019 0:00	RIGHT ANGLE	0	RT U E	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	-94.2276	36.8980 3	205 9	SAT	CLEAR	DRY	DAYLIGHT	FATAL	9/14/2019 0:00	PEDESTRIAN	0.577	CRD RACCOON RD S	NEWTON
Straight	419	NON-CITY OR UNINCORPORATED	1	- 94.25325	36.8078 1	133 0	SUN	CLEAR	DRY	DAYLIGHT	FATAL	10/27/201 9 0:00	OUT OF CONTROL	5.102	RT H S	NEWTON
Straight	2686 2	NON-CITY OR UNINCORPORATED	2	- 94.43077	36.8860 7	214 3	TUE	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	FATAL	7/16/2019 0:00	PEDALCYCLE	27.699	IS 49 N	NEWTON
Straight	9135	JOPLIN	1	- 94.61521	37.0019 4	942	SUN	RAIN	WET	DAYLIGHT	FATAL	10/6/2019 0:00	OUT OF CONTROL	0.411	US 166 W	NEWTON
Curve	5820	NON-CITY OR UNINCORPORATED	1	- 94.49782	36.9941 1	222 0	SAT	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	FATAL	5/22/2021 0:00	OUT OF CONTROL	1.985	RT NN S	NEWTON
Straight	1013 8	NON-CITY OR UNINCORPORATED	3	- 94.56557	36.9398 8	161 5	FRI	CLOUDY	DRY	DAYLIGHT	FATAL	5/14/2021 0:00	REAR END	64.093	MO 43 S	NEWTON
Curve		NON-CITY OR UNINCORPORATED	1	- 94.18963	36.8099 7	0	SUN	UNKNOW N	UNK N	NOT STATED/UNKNOW N	FATAL	11/14/202 1 0:00	OUT OF CONTROL	0.553	CRD POPPY DR E	NEWTON
Straight	301	NON-CITY OR UNINCORPORATED	1	- 94.43051	36.9266 1	0	SUN	FREEZING	DRY	NOT STATED/UNKNOW	FATAL	1/19/2020 0:00	OUT OF CONTROL	0.049	RP IS49S TO CRD IRIS RD W	NEWTON
Straight	1115 6	NEOSHO	2	- 94.38344	36.8581 4	163 0	MON	CLOUDY	WET	DAYLIGHT	FATAL	5/11/2020 0:00	RIGHT ANGLE	1.261	BU 60 E	NEWTON
Straight		JOPLIN	1	- 94.51935	37.0418 9	104 6	THU	CLEAR	DRY	DAYLIGHT	FATAL	6/18/2020 0:00	OUT OF CONTROL	0	CST 43RD ST E	NEWTON

NEWTON	IS 44 E	6.99	OUT OF CONTROL	5/3/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SUN	135 8	37.0397 7	-94.5095	1	JOPLIN	4381 4	Straight
NEWTON	RT M S	0.9	OUT OF CONTROL	9/16/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	212 8	36.9072 3	- 94.19103	1	NON-CITY OR UNINCORPORATED	852	Straight
NEWTON	IS 44 E	1.06	PEDESTRIAN	8/2/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	339	37.0005 7	- 94.59971	1	JOPLIN	2693 0	Straight
NEWTON	CRD REINMILLER RD S	2.761	OUT OF CONTROL	9/8/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	TUE	171 7	37.0152 7	- 94.44346	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	IS 44 W	290.37 1	PASSING	8/22/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	708	37.0060 9	- 94.56917	2	JOPLIN	2693 0	Straight
NEWTON	CRD QUEENS LACE E	1.668	REAR END	9/25/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	FRI	740	36.7946 7	- 94.48082	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	MO 86 E	8.522	OUT OF CONTROL	5/13/2020 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	170 0	36.9216 5	- 94.53523	2	NON-CITY OR UNINCORPORATED	2459	Curve
NEWTON	US 60 E	25.324	HEAD ON	9/22/2020 0:00	FATAL	DAYLIGHT	WET	RAIN	TUE	818	36.9212 5	- 94.22503	2	NON-CITY OR UNINCORPORATED	3750	Straight
NEWTON	IS 49 N	32.822	PEDESTRIAN	9/21/2020 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	222 1	36.9603 6	- 94.42966	1	NON-CITY OR UNINCORPORATED	2540 2	Straight
NEWTON	MO 59 S	8.216	OUT OF CONTROL	12/7/2021 0:00	FATAL	DAYLIGHT	WET	CLOUDY	TUE	133 0	36.9660 6	- 94.31594	1	NON-CITY OR UNINCORPORATED	1080 9	Straight
NEWTON	RT O S	6.048	OUT OF CONTROL	6/15/2019 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	SAT	172 0	36.7847 4	- 94.20068	1	NON-CITY OR UNINCORPORATED	515	Curve
NEWTON	RT CC S	0.156	FIXED OBJECT	9/13/2021 0:00	FATAL	DAYLIGHT	DRY	CLEAR	MON	151 1	36.8936 5	- 94.52627	1	NON-CITY OR UNINCORPORATED	1131	Straight
NEWTON	RT NN S	3.758	OUT OF CONTROL	11/21/202 1 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	211	36.9775 3	- 94.48029	1	NON-CITY OR UNINCORPORATED	5820	Curve
NEWTON	CRD NORWAY RD E	0.79	OUT OF CONTROL	12/17/202 1 0:00	FATAL	DARK W/ STREET LIGHTS OFF	WET	RAIN	FRI	185 8	36.8495 3	- 94.31124	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	US 60 E	2.665	OUT OF CONTROL	11/8/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	2	36.8233	- 94.57058	1	NON-CITY OR UNINCORPORATED	8105	Straight
NEWTON	US 60 E	15.774	LEFT TURN	6/2/2020 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	TUE	162 0	36.8554 1	- 94.33958	2	NON-CITY OR UNINCORPORATED	9001	Straight
NEWTON	IS 49 N	35.15	SIDESWIPE	6/30/2020 0:00	FATAL	DAYLIGHT	WET	CLOUDY	TUE	925	36.9939 1	- 94.43238	2	JOPLIN		Curve
NEWTON	MO 86 E	26.293	ANIMAL DRAWN VEH OR RIDDEN ANIMAL	1/27/2019 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	182 0	36.8782 3	- 94.28273	2	NON-CITY OR UNINCORPORATED	4094	Straight
NEWTON	CRD SPURGEON RD S	1.326	HEAD ON	5/10/2023 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	WED	164 5	36.9773	-94.4712	2	NON-CITY OR UNINCORPORATED	1	Straight
NEWTON	CRD RIVER ROAD E	0.099	OUT OF CONTROL	6/21/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	202 8	37.0210 6	- 94.51184	1	NON-CITY OR UNINCORPORATED	2319	Curve
NEWTON	IS 44 E	6.771	OUT OF CONTROL	8/26/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SAT	110 0	37.0377 5	- 94.51255	1	JOPLIN	4442 5	Straight
NEWTON	N OR 44 E	0.022	REAR END	10/13/202 3 0:00	FATAL	DAYLIGHT	DRY	CLOUDY	FRI	180 0	37.0086 9	- 94.55788	2	NON-CITY OR UNINCORPORATED	1001	Straight

NEWTON	IS 44 E	8.802	PEDESTRIAN	9/27/2023 0:00	FATAL	DARK - UNKNOWN	DRY	CLEAR	WED	221 7	37.0465	- 94.47881	1	JOPLIN	4442 5	Straight
NEWTON	CRD KODIAK RD S	1.415	OUT OF CONTROL	9/15/2023 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	551	36.8597 3	- 94.40943	1	NON-CITY OR UNINCORPORATED	1223	Straight
NEWTON	MO 43 S	60.642	AVOIDING	9/17/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	SUN	150 0	36.9872 1	- 94.55196	1	NON-CITY OR UNINCORPORATED	1018 9	Straight
NEWTON	US 60 E	24.214	LEFT TURN RIGHT ANGLE COLLISION	9/20/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	WED	153 0	36.9211 4	- 94.24501	2	GRANBY	3948	Curve
NEWTON	MO 86 E	18.133	HEAD ON	6/1/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	100 0	36.8800 7	-94.3998	2	NEOSHO	9695	Curve
NEWTON	RT Y S	1.287	HEAD ON	10/5/2023 0:00	FATAL	DAYLIGHT	DRY	CLEAR	THU	165 3	36.8133 3	- 94.52271	2	NON-CITY OR UNINCORPORATED	1149	Curve
NEWTON	CRD WALLABY RD S	1.384	OUT OF CONTROL	8/10/2023 0:00	FATAL	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	250	36.9352 7	- 94.08097	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	MO 86 E	25.997	OUT OF CONTROL	9/10/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	195 5	36.8783	- 94.28808	1	NON-CITY OR UNINCORPORATED	3885	Straight
NEWTON	MO 86 E	30.196	OUT OF CONTROL	4/24/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	140 0	36.8770 6	- 94.21228	1	NON-CITY OR UNINCORPORATED	2748	Straight
NEWTON	US 60 E	15.052	OUT OF CONTROL	8/18/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	745	36.8517 2	- 94.35178	1	NEOSHO	9001	Straight
NEWTON	US 60 E	9.095	REAR END	3/18/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	133 5	36.8378 1	- 94.45694	3	NON-CITY OR UNINCORPORATED	8783	Straight
NEWTON	IS 49 N	28.648	AVOIDING	3/14/2021 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	SUN	170 6	36.8998 3	-94.4304	2	NON-CITY OR UNINCORPORATED	2771 7	Straight
NEWTON	US 60 E	6.277	OUT OF CONTROL	12/31/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	FRI	200 5	36.8325 9	- 94.50729	1	NON-CITY OR UNINCORPORATED	9898	Straight
NEWTON	IS 49 N	23.012	AVOIDING	2/8/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	MON	180 9	36.8214 7	- 94.41655	2	NON-CITY OR UNINCORPORATED	1857 8	Straight
NEWTON	US 60 E	27.828	OUT OF CONTROL	2/9/2021 0:00	SER. INJURY	DAYLIGHT	ICE	CLOUDY	TUE	920	36.9200 5	- 94.17983	1	NON-CITY OR UNINCORPORATED	3685	Straight
NEWTON	US 60 E	10.706	REAR END	4/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	140 5	36.8395 2	- 94.42794	2	NON-CITY OR UNINCORPORATED	9898	Straight
NEWTON	MO 86 E	34.437	OUT OF CONTROL	4/9/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	140 0	36.8592 6	- 94.15347	1	NON-CITY OR UNINCORPORATED	1618	Straight
NEWTON	MO 86 E	29.755	OUT OF CONTROL	9/15/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	WED	625	36.8771 8	- 94.22024	1	NON-CITY OR UNINCORPORATED	2941	Straight
NEWTON	IS 49 N	34.4	REAR END	8/25/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	120 8	36.9831 4	- 94.43206	2	NON-CITY OR UNINCORPORATED	2469 0	Straight
NEWTON	IS 49 N	33.59	REAR END	8/1/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	MON	214 5	36.9714 8	- 94.43011	2	NON-CITY OR UNINCORPORATED	2469 0	Straight
NEWTON	US 60 E	11.452	OUT OF CONTROL	6/17/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	210 0	36.8402 5	- 94.41452	1	NEOSHO	1355 8	Straight
NEWTON	US 60 E	11.707	LEFT TURN	12/1/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	173 5	36.8405 7	- 94.40994	2	NEOSHO	1355 8	Straight

NEWTON	IS 44 E	2.773	PASSING	1/9/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	194 5	37.0058 4	- 94.56943	4	JOPLIN	3170 8	Straight
NEWTON	MO 175 S	3.456	RIGHT ANGLE	2/7/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	750	36.9237 7	- 94.41454	2	NON-CITY OR UNINCORPORATED	4089	Straight
NEWTON	MO 86 E	19.169	LEFT TURN	10/7/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	195 0	36.8682 9	- 94.38935	2	NEOSHO	8796	Straight
NEWTON	MO 86 E	19.157	REAR END	6/18/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	182 9	36.8684 6	- 94.38943	3	NEOSHO	9518	Straight
NEWTON	CST ONEIDA ST E	0.123	RIGHT ANGLE	7/6/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	439	36.8363 8	-94.6164	2	SENECA	783	Straight
NEWTON	MO 59 S	21.461	OTHER	7/8/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	215 6	36.8148 1	- 94.39529	1	NEOSHO	9998	Straight
NEWTON	LP 49 S	2.872	HEAD ON	7/6/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	154 5	36.8678	- 94.38919	2	NEOSHO	5629	Straight
NEWTON	CRD DRAKE DR S	0.442	OUT OF CONTROL	3/17/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	153 0	36.9975 9	- 94.53835	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CRD ELAND RD S	0.749	OUT OF CONTROL	2/6/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	185 6	36.9833 4	- 94.51612	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	MO 43 S	65.142	RIGHT ANGLE	3/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	133 7	36.9256 1	- 94.57216	2	NON-CITY OR UNINCORPORATED	7678	Straight
NEWTON	CST HAMILTON ST S	0.387	OUT OF CONTROL	1/29/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	535	36.8639 6	- 94.36506	1	NEOSHO	1419	Straight
NEWTON	CRD OLD HWY 71 S	1.769	OUT OF CONTROL	2/20/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	152 3	37.0022 4	- 94.44777	1	NON-CITY OR UNINCORPORATED	314	Curve
NEWTON	CST 34TH ST E	0.862	REAR END	4/22/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	112 1	37.0513 8	- 94.50871	2	JOPLIN		Straight
NEWTON	IS 44 W	290.23 1	OUT OF CONTROL	3/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	131 8	37.0065 2	-94.5667	2	JOPLIN	3170 8	Straight
NEWTON	RT NN S	3.196	OUT OF CONTROL	4/13/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	202 0	36.9801 9	-94.4883	1	NON-CITY OR UNINCORPORATED	5896	Curve
NEWTON	CRD APRICOT DR E	1.971	OUT OF CONTROL	4/14/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	152 5	37.0288 3	- 94.58372	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CST COLORADO DR E	0.233	OUT OF CONTROL	4/24/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	RAIN	SUN	55	37.0373 4	- 94.48412	1	JOPLIN		Curve
NEWTON	RT V E	1.974	OUT OF CONTROL	3/18/2022 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	FRI	101 5	36.9962 1	- 94.40242	1	NON-CITY OR UNINCORPORATED	2518	Straight
NEWTON	CRD WALLABY RD S	1.439	AVOIDING	6/14/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	740	36.8388 4	- 94.08446	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	IS 44 E	4.404	PEDESTRIAN	6/5/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	229	37.0128 9	- 94.54165	1	JOPLIN	3775 3	Curve
NEWTON	MO 86 E	2.743	OUT OF CONTROL	5/26/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	221 5	37.0047 2	- 94.53171	1	NON-CITY OR UNINCORPORATED	3532	Curve
NEWTON	IS 44 W	283.73 3	OUT OF CONTROL	6/28/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	135 3	37.0478 6	- 94.46767	1	JOPLIN	3767 3	Straight

NEWTON	RT NN S	3.32	OUT OF CONTROL	5/30/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	0	36.9802 8	- 94.48608	1	NON-CITY OR UNINCORPORATED	5896	Straight
NEWTON	CRD HEREFORD RD S	0.056	OUT OF CONTROL	6/8/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	WED	310	36.8804 4	- 94.46326	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CRD WALLEYE RD S	4.459	OUT OF CONTROL	5/11/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	210 0	36.9560 3	- 94.10296	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CST S JACKSON AVE S	0.671	OUT OF CONTROL	6/7/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	210 0	37.0455 4	- 94.52102	1	JOPLIN	1281	Curve
NEWTON	IS 44 E	4.404	OUT OF CONTROL	6/5/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	229	37.0128 9	- 94.54165	1	JOPLIN	3775 3	Curve
NEWTON	CRD WALLEYE RD S	6.029	OTHER	5/23/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	164 5	36.9333 4	- 94.10371	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CRD KODIAK RD S	0.17	LEFT TURN	6/29/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	900	36.8777 8	- 94.40896	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	CST W MCCORD ST E	0.48	PEDALCYCLE	4/8/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	151 3	36.8709 1	- 94.37325	2	NEOSHO	3110	Straight
NEWTON	N OR 44 E	0.635	OUT OF CONTROL	7/23/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	225 0	37.0192 6	- 94.53662	1	NON-CITY OR UNINCORPORATED	550	Straight
NEWTON	CRD PALM RD E	0.766	OUT OF CONTROL	8/5/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	185 0	36.8173 2	- 94.40191	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	IS 44 W	287.47 3	OUT OF CONTROL	12/7/2022 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	WED	212 5	37.0279 1	- 94.52768	1	JOPLIN	3775 3	Curve
NEWTON	LP 49 S	14.895	LEFT TURN RIGHT ANGLE COLLISION	9/2/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	174 7	37.0529 4	- 94.47841	2	JOPLIN	2723 9	Straight
NEWTON	CST DEAN KELLING DR E	0.318	OUT OF CONTROL	7/3/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	200 5	36.8701 7	- 94.35858	1	NEOSHO		Straight
NEWTON	IS 44 E	5.694	OUT OF CONTROL	8/29/2022 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	MON	180 6	37.0277 8	- 94.52756	1	JOPLIN	3775 3	Curve
NEWTON	MO 43 S	68.804	OUT OF CONTROL	9/2/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	111 6	36.8761 2	- 94.59611	1	SENECA	7678	Straight
NEWTON	RT Y S	3.132	OUT OF CONTROL	9/30/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	135 0	36.7879 2	- 94.52261	1	NON-CITY OR UNINCORPORATED	515	Curve
NEWTON	RT HH E	7.142	OUT OF CONTROL	10/3/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	900	36.8267 9	- 94.26114	1	NON-CITY OR UNINCORPORATED	786	Straight
NEWTON	MO 43 S	70.145	HEAD ON	11/3/2022 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	155 1	36.8588 1	- 94.60565	3	SENECA	7357	Straight
NEWTON	RT CC S	1.044	OUT OF CONTROL	11/15/202 2 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	163 0	36.8812 7	- 94.52273	1	NON-CITY OR UNINCORPORATED	1146	Curve
NEWTON	MO 59 S	25.463	OUT OF CONTROL	12/18/202 2 0:00	SER. INJURY	NOT STATED/UNKNOW N	DRY	CLEAR	SUN	0	36.7605 2	- 94.41588	1	NON-CITY OR UNINCORPORATED	6219	Straight
NEWTON	IS 44 E	7.825	PEDESTRIAN	12/17/202 2 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	237	37.0455 1	- 94.49645	1	JOPLIN	4321 5	Curve
NEWTON	RT D E	3.744	SIDESWIPE	12/13/202 2 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	TUE	745	36.8009 8	- 94.35249	4	NEOSHO	468	Straight

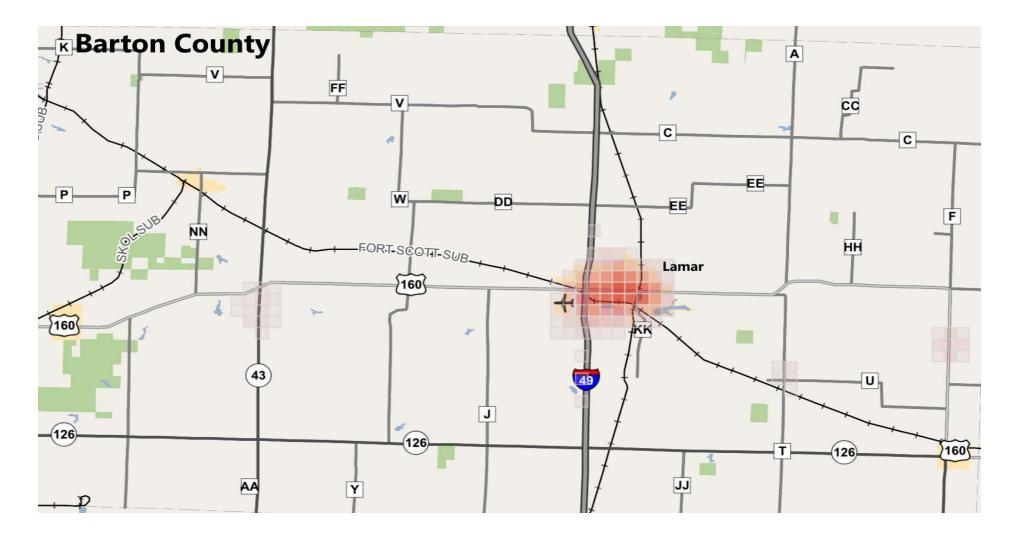
Straight	2581 1	NON-CITY OR UNINCORPORATED	1	-94.43	36.9629 3	175 0	THU	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/6/2022 0:00	AVOIDING	151.00 1	IS 49 S	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	- 94.26086	37.0054 9	173 0	WED	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/21/202 2 0:00	OUT OF CONTROL	2.301	CRD QUAIL RD S	NEWTON
Curve		NON-CITY OR UNINCORPORATED	1	-94.3931	36.9311 2	233 0	TUE	CLEAR	ICE	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/27/202 2 0:00	OUT OF CONTROL	1.342	CRD HICKORY DR E	NEWTON
Curve	3826	GRANBY	2	- 94.24279	36.9215 3	600	MON	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	12/12/202 2 0:00	U - TURN	24.341	US 60 E	NEWTON
Straight	7917	NON-CITY OR UNINCORPORATED	2	- 94.48419	36.8362 1	850	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/5/2022 0:00	RIGHT ANGLE	7.581	US 60 E	NEWTON
Straight	2903	NON-CITY OR UNINCORPORATED	2	-94.2029	36.8769	162 0	WED	CLOUDY	DRY	DAYLIGHT	SER. INJURY	10/5/2022 0:00	LEFT TURN RIGHT ANGLE COLLISION	30.716	MO 86 E	NEWTON
Straight	9073	JOPLIN	1	- 94.51469	37.0372 3	190 1	SAT	CLOUDY	DRY	DAYLIGHT	SER. INJURY	3/26/2022 0:00	OTHER	42.041	MO 43 N	NEWTON
Straight	2674	NON-CITY OR UNINCORPORATED	2	- 94.31595	36.9048 1	930	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/8/2022 0:00	LEFT TURN	19.862	US 60 E	NEWTON
Straight	4103	NON-CITY OR UNINCORPORATED	2	- 94.28235	36.8782 3	175 0	WED	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/28/2022 0:00	RIGHT ANGLE	26.314	MO 86 E	NEWTON
Straight	1890	NON-CITY OR UNINCORPORATED	1	- 94.61104	36.8155 5	0	SAT	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	10/29/202 2 0:00	OUT OF CONTROL	73.338	MO 43 S	NEWTON
Straight	1942 3	NEOSHO	2	- 94.39434	36.8415 1	213 8	TUE	CLEAR	DRY	DARK W/ STREET LIGHTS ON	SER. INJURY	2/21/2023 0:00	LEFT TURN	12.574	US 60 E	NEWTON
Straight	1317 9	NEOSHO	4	- 94.40727	36.8407 2	150 4	WED	CLEAR	DRY	DAYLIGHT	SER. INJURY	2/15/2023 0:00	REAR END	11.855	US 60 E	NEWTON
Straight	8046	NON-CITY OR UNINCORPORATED	1	- 94.57246	36.9249 4	181 0	THU	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	11/23/202 3 0:00	OUT OF CONTROL	65.191	MO 43 S	NEWTON
Curve		NON-CITY OR UNINCORPORATED	1	- 94.44361	37.0156 7	154 5	WED	CLOUDY	DRY	DAYLIGHT	SER. INJURY	3/15/2023 0:00	OUT OF CONTROL	2.732	CRD REINMILLER RD S	NEWTON
Straight	271	NON-CITY OR UNINCORPORATED	2	- 94.26527	36.8490 7	750	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	2/28/2023 0:00	RIGHT ANGLE	2	RT H S	NEWTON
Straight	8046	NON-CITY OR UNINCORPORATED	2	- 94.58937	36.8892 4	182 3	SUN	CLOUDY	ICE	DARK W/ STREET LIGHTS OFF	SER. INJURY	1/29/2023 0:00	LEFT TURN	67.825	MO 43 S	NEWTON
Curve	1219	NON-CITY OR UNINCORPORATED	2	- 94.52294	36.8617	144 0	SAT	RAIN	WET	DAYLIGHT	SER. INJURY	1/21/2023 0:00	HEAD ON	2.405	RT CC S	NEWTON
Curve	2319	NON-CITY OR UNINCORPORATED	2	- 94.49251	37.0153 7	134 0	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	3/17/2023 0:00	HEAD ON	1.302	CRD RIVER ROAD E	NEWTON
Straight	7470	JOPLIN	2	- 94.55039	37.0518 7	102 2	MON	CLEAR	WET	DAYLIGHT	SER. INJURY	3/6/2023 0:00	RIGHT TURN RIGHT ANGLE COLLISION	0.006	CRD CROW RD S	NEWTON
Straight	1659	NON-CITY OR UNINCORPORATED	3	- 94.24992	36.9944 9	202 5	SAT	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	5/6/2023 0:00	SIDESWIPE	2.414	RT E S	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	- 94.29432	36.9802 1	141 0	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	5/1/2023 0:00	OUT OF CONTROL	2.158	CRD ELDER RD E	NEWTON
Straight	9564	SAGINAW	1	- 94.47928	37.0243 7	143 0	WED	CLOUDY	DRY	DAYLIGHT	SER. INJURY	5/3/2023 0:00	OUT OF CONTROL	16.872	LP 49 S	NEWTON

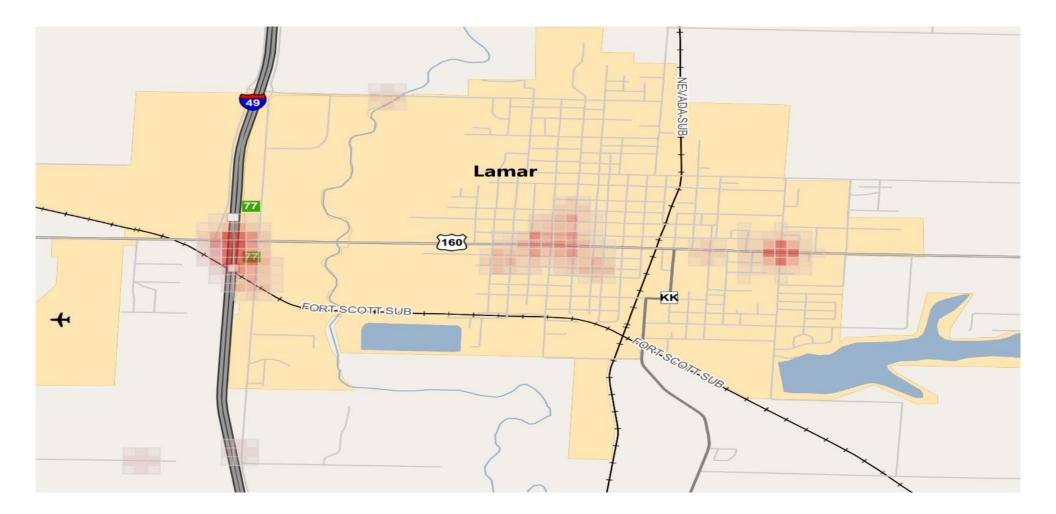
NEWTON	RT V E	1.949	OUT OF CONTROL	5/6/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	845	36.9962 1	- 94.40287	1	NON-CITY OR UNINCORPORATED	2679	Straight
NEWTON	IS 44 W	284.32 6	REAR END	5/25/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	143 9	37.0466 3	- 94.47824	2	JOPLIN	3872 7	Straight
NEWTON	CRD APRICOT DR E	2.962	OUT OF CONTROL	4/14/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	140 0	37.0315 9	- 94.56623	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	LP 49 S	17.595	SIDESWIPE	5/21/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	183 0	37.0139	- 94.47956	3	NON-CITY OR UNINCORPORATED	4820	Straight
NEWTON	MO 86 E	1.642	OUT OF CONTROL	5/24/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	202 0	37.0148 1	- 94.51671	1	NON-CITY OR UNINCORPORATED	3758	Curve
NEWTON	IS 44 E	5.205	REAR END	6/23/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	145 9	37.0221	- 94.53285	4	JOPLIN	3680 3	Curve
NEWTON	LP 49 S	18.317	LEFT TURN RIGHT ANGLE COLLISION	6/9/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	810	37.0041 2	- 94.47675	2	NON-CITY OR UNINCORPORATED	4820	Straight
NEWTON	CRD APRICOT DR E	1.922	OUT OF CONTROL	7/1/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	955	37.0287 3	-94.5846	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	RT HH E	2.095	OUT OF CONTROL	7/2/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	164 5	36.8530 3	- 94.33069	1	NON-CITY OR UNINCORPORATED	1124	Straight
NEWTON	CRD OLD HWY 71 S	0.436	FIXED OBJECT	5/22/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	170 0	37.0124 2	- 94.46677	1	NON-CITY OR UNINCORPORATED	320	Straight
NEWTON	US 60 E	12.574	HEAD ON	6/4/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	174 8	36.8415 1	- 94.39434	3	NEOSHO	2018 8	Straight
NEWTON	US 60 E	12.565	REAR END	5/20/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	175 6	36.8415	-94.3945	2	NEOSHO	2018 8	Straight
NEWTON	US 60 E	22.069	REAR END	3/26/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	165 4	36.9180 8	- 94.28134	2	GRANBY	5504	Curve
NEWTON	MO 175 S	1.288	LEFT TURN	3/2/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	153 5	36.9543 8	- 94.41806	2	NON-CITY OR UNINCORPORATED	4036	Straight
NEWTON	US 60 W	328.04 1	REAR END	12/10/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	125 2	36.8416 9	- 94.39165	2	NEOSHO	9978	Straight
NEWTON	MO 86 E	19.058	OUT OF CONTROL	4/8/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	144 9	36.8697 8	- 94.39013	1	NEOSHO	1258 4	Straight
NEWTON	RT BB E	1.965	OUT OF CONTROL	1/15/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	SNO W	SNOW	FRI	215 5	36.9251 7	- 94.53666	1	NON-CITY OR UNINCORPORATED	710	Straight
NEWTON	MO 86 E	19.769	OUT OF CONTROL	10/19/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	TUE	232 1	36.8703 5	-94.3799	1	NEOSHO	7834	Curve
NEWTON	MO 59 S	22.308	LEFT TURN RIGHT ANGLE COLLISION	10/11/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	162 5	36.8025 3	-94.396	2	NEOSHO	1088 5	Straight
NEWTON	CST SHERMAN ST E	0.523	RIGHT ANGLE	1/6/2021 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	WED	100 4	36.8635 2	- 94.37146	2	NEOSHO		Straight
NEWTON	CRD APRICOT DR E	3.178	HEAD ON	3/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	100 0	37.0326 2	- 94.56267	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	S OR 44 E	0.483	OUT OF CONTROL	5/4/2021 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	TUE	731	37.0107 9	- 94.54452	1	JOPLIN		Straight

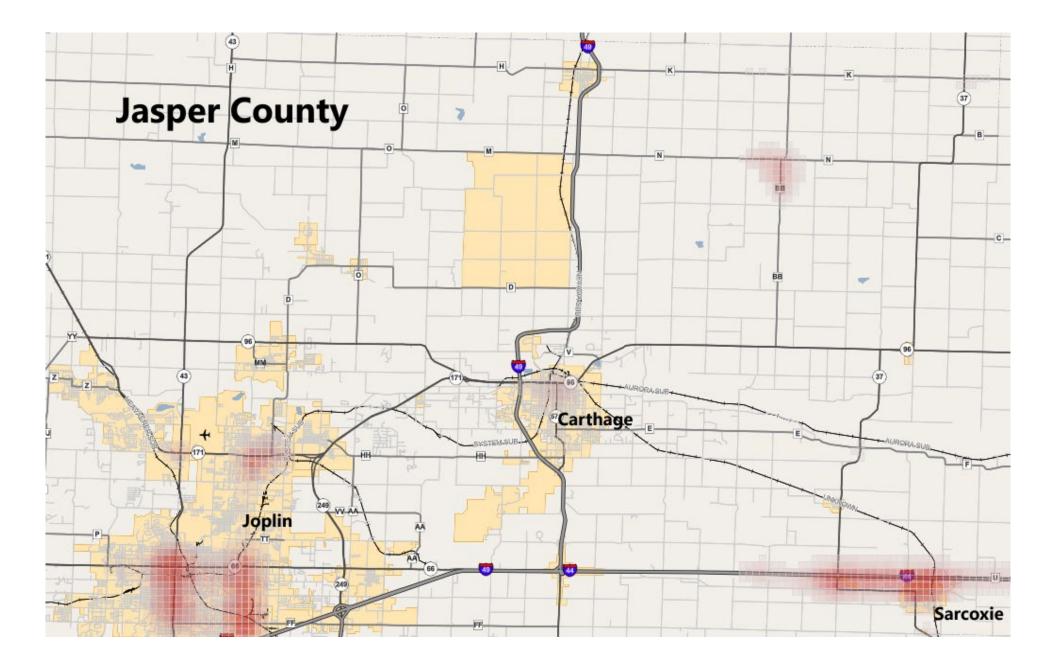
NEWTON	IS 44 E	1.193	REAR END	3/26/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	234 2	37.0009 8	- 94.59736	2	JOPLIN	3203 7	Straight
NEWTON	RT P E	0.995	HEAD ON	4/25/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	111 0	36.9538 9	- 94.51655	2	NON-CITY OR UNINCORPORATED	910	Straight
NEWTON	CRD STATE LINE RD S	0.303	OUT OF CONTROL	4/19/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	MON	210 0	36.8798 2	- 94.61813	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	LP 49 S	17.334	LEFT TURN RIGHT ANGLE COLLISION	5/3/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	160 8	37.0176 8	- 94.47946	2	SAGINAW	4681	Straight
NEWTON	MO 86 E	1.284	LEFT TURN	5/30/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	153 0	37.0193 5	- 94.51395	2	REDINGS MILL	2753	Straight
NEWTON	MO 43 S	60.71	REAR END	5/25/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	123 0	36.9862 3	- 94.55199	2	NON-CITY OR UNINCORPORATED	1140 0	Straight
NEWTON	CRD APRICOT DR E	3.437	OUT OF CONTROL	5/27/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	CLOUDY	THU	214 3	37.0323 4	-94.558	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	MO 86 E	18.226	OUT OF CONTROL	5/31/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	160 8	36.8797 3	- 94.39818	1	NEOSHO	1258 4	Curve
NEWTON	MO 86 E	6.68	REAR END	6/8/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	173 0	36.9483 4	- 94.53464	2	NON-CITY OR UNINCORPORATED	1707	Straight
NEWTON	MO 86 E	8.921	OUT OF CONTROL	6/25/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	154 0	36.9173 3	- 94.53082	1	NON-CITY OR UNINCORPORATED	2830	Curve
NEWTON	RT O S	4.135	PASSING	7/10/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	152 0	36.8124 7	- 94.19946	2	NON-CITY OR UNINCORPORATED	568	Straight
NEWTON	RT H S	3.703	OUT OF CONTROL	8/15/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	204 0	36.8243 8	- 94.26592	1	NON-CITY OR UNINCORPORATED	462	Curve
NEWTON	CRD WALLABY RD S	2.214	OUT OF CONTROL	8/2/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	100	36.7780 5	- 94.08977	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	RT W S	5.895	OUT OF CONTROL	3/6/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	WED	182 5	36.9383 9	- 94.19165	1	NON-CITY OR UNINCORPORATED	187	Curve
NEWTON	IS 44 E	2.395	REAR END	2/8/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	FRI	350	37.0046 8	- 94.57612	2	JOPLIN	2907 0	Straight
NEWTON	LP 49 S	3.648	HEAD ON	1/11/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	RAIN	FRI	202 2	36.8565 8	- 94.38968	2	NEOSHO	5706	Straight
NEWTON	CRD GUM RD E	1.339	OUT OF CONTROL	6/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	805	36.9468 2	- 94.29468	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	MO 86 E	18.54	OUT OF CONTROL	4/30/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	734	36.8764 1	- 94.39446	1	NEOSHO	1259 0	Curve
NEWTON	MO 86 E	12.947	OUT OF CONTROL	7/14/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	955	36.8917 5	- 94.48334	2	NON-CITY OR UNINCORPORATED	1224	Curve
NEWTON	MO 43 S	59.866	HEAD ON	5/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	FRI	105 8	36.9984 7	- 94.55177	2	NON-CITY OR UNINCORPORATED	1596 1	Straight
NEWTON	CRD COYOTE DR S	0.964	OUT OF CONTROL	9/22/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	108	37.0392 8	- 94.55743	1	NON-CITY OR UNINCORPORATED	1106 0	Straight
NEWTON	MO 59 S	23.332	AVOIDING	9/5/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	THU	800	36.7881 3	- 94.39907	2	NEOSHO	6205	Straight

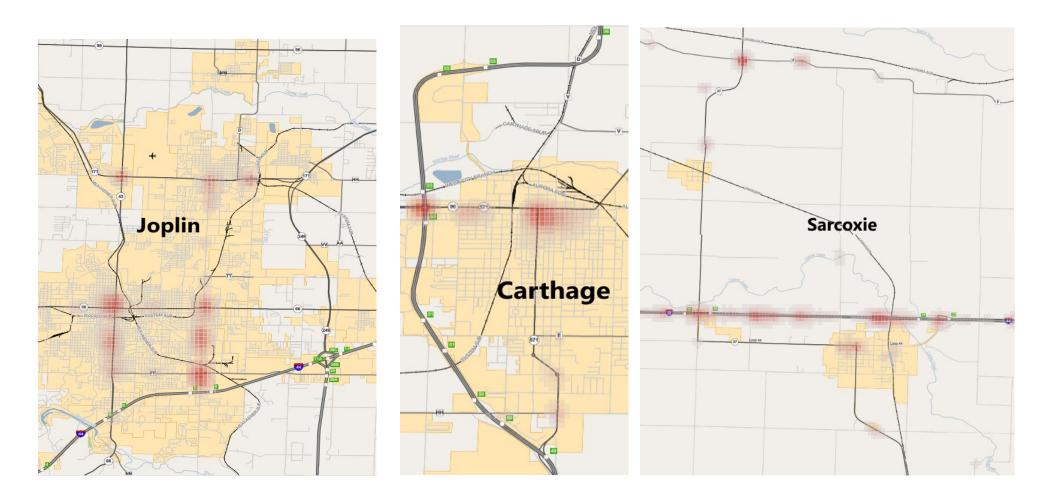
NEWTON	US 60 E	30.525	OUT OF CONTROL	9/9/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	151 5	36.9187 7	- 94.13111	1	NON-CITY OR UNINCORPORATED	3577	Straight
NEWTON	CRD LINBARGER RD S	1.65	OUT OF CONTROL	11/3/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	174 5	36.8069 6	- 94.09333	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	US 60 E	21.52	REAR END	11/28/201 9 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	THU	172 8	36.9153 2	- 94.29053	3	NON-CITY OR UNINCORPORATED	5343	Straight
NEWTON	US 60 E	33.257	REAR END	11/1/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	140 0	36.9178 8	- 94.08176	2	NON-CITY OR UNINCORPORATED	3577	Straight
NEWTON	MO 43 S	64.637	OUT OF CONTROL	12/16/201 9 0:00	SER. INJURY	DAYLIGHT	ICE	CLOUDY	MON	915	36.9324 8	- 94.56899	1	NON-CITY OR UNINCORPORATED	9984	Straight
NEWTON	MO 86 E	25.57	AVOIDING	8/11/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	115 5	36.8747 7	- 94.29286	2	NON-CITY OR UNINCORPORATED	4094	Curve
NEWTON	MO 86 E	23.197	JACKKNIFE	5/24/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	163 0	36.8718 3	- 94.33133	1	NON-CITY OR UNINCORPORATED	3512	Straight
NEWTON	RT HH E	12.353	LEFT TURN RIGHT ANGLE COLLISION	4/12/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	154 0	36.8241 5	-94.1765	2	NON-CITY OR UNINCORPORATED	622	Straight
NEWTON	CST GLENDALE RD E	0.577	OUT OF CONTROL	7/22/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	184 2	37.0410 3	- 94.53713	1	JOPLIN	1186	Curve
NEWTON	RT B S	0.607	PEDESTRIAN	9/2/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	620	36.9073 9	- 94.26356	1	GRANBY	1110	Straight
NEWTON	RT HH E	12.556	FARM ANIMAL	8/29/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	202 5	36.8240 2	- 94.17284	1	NON-CITY OR UNINCORPORATED	622	Straight
NEWTON	RT H S	1.612	OUT OF CONTROL	12/11/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	164 5	36.8547	- 94.26512	1	NON-CITY OR UNINCORPORATED	228	Straight
NEWTON	CST CONNECTICUT AVE S	2.677	FIXED OBJECT	8/19/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	190 6	37.0403 2	-94.4969	1	LEAWOOD	1890	Straight
NEWTON	RT P E	0.995	RIGHT ANGLE	8/18/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	WED	165 0	36.9538 9	- 94.51655	2	NON-CITY OR UNINCORPORATED	910	Straight
NEWTON	RT H S	1.386	OUT OF CONTROL	5/5/2021 0:00	SER. INJURY	DAYLIGHT	DRY	FOG/MIST	WED	625	36.8579 7	- 94.26501	1	NON-CITY OR UNINCORPORATED	251	Straight
NEWTON	RT HH E	2.324	OUT OF CONTROL	5/30/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	163 0	36.8519 3	-94.3268	1	NON-CITY OR UNINCORPORATED	1042	Curve
NEWTON	CRD BETHEL RD S	5.471	FIXED OBJECT	9/25/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	144 5	36.8894 2	- 94.60702	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	LP 49 S	16.991	LEFT TURN	10/19/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	192 0	37.0226 4	- 94.47934	2	SAGINAW	4102	Straight
NEWTON	IS 44 W	286.97 2	REAR END	8/19/2021 0:00	SER. INJURY	DAYLIGHT	WET	RAIN	THU	161 2	37.0326 1	- 94.52078	4	SHOAL CREEK DRIVE	3067 7	Straight
NEWTON	IS 49 S	148.42 5	OUT OF CONTROL	1/18/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	320	36.9998 5	-94.4309	1	NON-CITY OR UNINCORPORATED	2951 8	Curve
NEWTON	IS 44 E	9.708	OUT OF CONTROL	4/16/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	619	37.0491 7	- 94.46296	1	JOPLIN	3828 8	Straight
NEWTON	MO 43 S	60.212	REAR END	4/14/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	142 5	36.9934 5	- 94.55186	2	NON-CITY OR UNINCORPORATED	1065 4	Straight

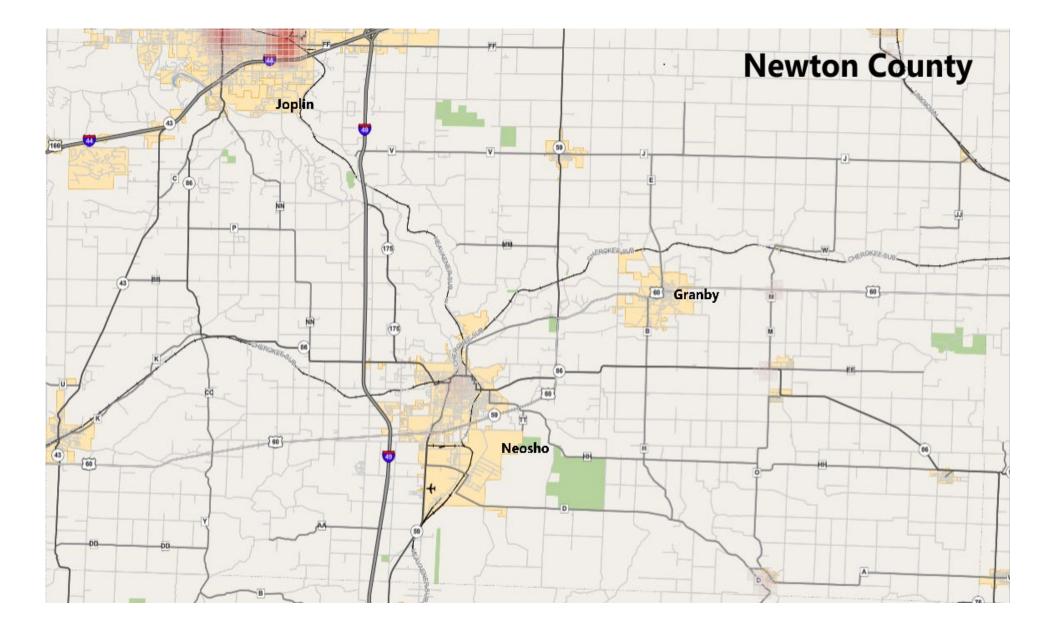
NEWTON	CRD CHERRY RD E	1.452	OUT OF CONTROL	2/22/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	230	37.01	- 94.32972	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	MO 59 S	7.157	LEFT TURN	2/27/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	THU	605	36.9814	- 94.31536	3	DIAMOND	1010 2	Straight
NEWTON	RT NN S	0.717	OUT OF CONTROL	5/4/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	MON	152 0	37.0102 2	- 94.50822	1	NON-CITY OR UNINCORPORATED	5057	Straight
NEWTON	CST OAKRIDGE DR S	1.015	OUT OF CONTROL	2/9/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	430	36.8512 8	- 94.37819	1	NEOSHO	2411	Straight
NEWTON	CRD KENTUCKY RD E	1.169	OUT OF CONTROL	5/15/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	201 0	36.8940 8	- 94.35068	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	LP 49 S	4.424	OUT OF CONTROL	11/19/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	183 0	36.8453 5	- 94.39064	1	NEOSHO	8593	Curve
NEWTON	CRD JAGUAR RD S	3.117	HEAD ON	2/11/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	TUE	125 0	36.7918 5	- 94.43217	2	NON-CITY OR UNINCORPORATED		Straight
NEWTON	RT W S	2.147	OUT OF CONTROL	3/11/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	183 5	36.9609 6	- 94.15304	1	NON-CITY OR UNINCORPORATED	179	Straight
NEWTON	RT H S	5.488	FARM ANIMAL	8/28/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	161 0	36.8028 8	- 94.25044	1	NON-CITY OR UNINCORPORATED	462	Straight
NEWTON	LP 49 S	18.328	REAR END	10/29/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	185 5	37.0040 1	- 94.47661	3	NON-CITY OR UNINCORPORATED	4681	Straight
NEWTON	RT E S	2.628	OUT OF CONTROL	6/6/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	150 0	36.9945 5	- 94.25379	1	NON-CITY OR UNINCORPORATED	1337	Straight
NEWTON	MO 59 S	23.331	RIGHT ANGLE	6/24/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	600	36.7881 4	- 94.39906	2	NEOSHO	5889	Straight
NEWTON	CRD DOUGLAS FIR E	0.545	OUT OF CONTROL	6/1/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	830	36.9974 5	- 94.52362	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	RT HH E	0.833	OUT OF CONTROL	12/10/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	232 2	36.8577 2	- 94.35106	1	NEOSHO	526	Straight
NEWTON	CST E 44TH ST E	0.592	RIGHT ANGLE	10/16/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	171 1	37.0404	- 94.49666	2	LEAWOOD	3601	Curve
NEWTON	RT NN S	5.05	LEFT TURN	6/20/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	170 0	36.9587 9	- 94.48052	2	NON-CITY OR UNINCORPORATED	5057	Straight
NEWTON	MO 43 S	68.225	REAR END	6/25/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	171 5	36.8838 6	- 94.59207	2	NON-CITY OR UNINCORPORATED	8143	Straight
NEWTON	CST 50TH ST E	0.722	OUT OF CONTROL	8/7/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	181 5	37.0332 3	- 94.50226	1	LEAWOOD	1558	Curve
NEWTON	MO 86 E	2.023	OUT OF CONTROL	8/23/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	170 9	37.0115 5	- 94.52208	1	NON-CITY OR UNINCORPORATED	3029	Curve
NEWTON	LP 49 S	15.322	OUT OF CONTROL	8/3/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	713	37.0467 7	- 94.47851	3	JOPLIN	1787 8	Curve
NEWTON	MO 86 E	17.456	LEFT TURN RIGHT ANGLE COLLISION	7/24/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	855	36.8802 8	- 94.41202	2	NEOSHO	1186 0	Straight
NEWTON	RT O S	2.467	OUT OF CONTROL	9/12/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SAT	112 5	36.8332	- 94.19395	1	NON-CITY OR UNINCORPORATED	601	Curve

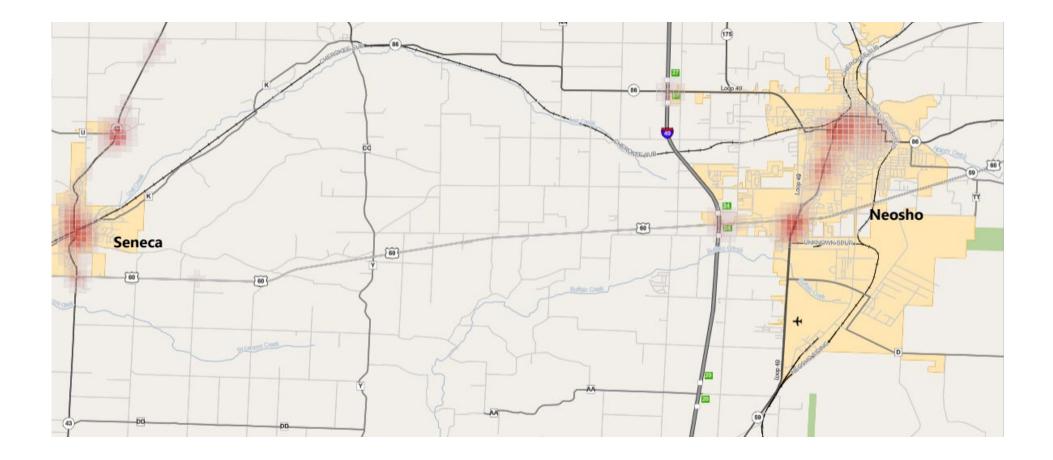

NEWTON	CRD NEWTON RD E	7.056	AVOIDING	9/26/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	194 0	37.0511	- 94.18587	1	NON-CITY OR UNINCORPORATED	948	Straight
NEWTON	BU 60 E	6.055	OUT OF CONTROL	8/18/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	40	36.9018 7	- 94.33488	1	NON-CITY OR UNINCORPORATED	4900	Curve
NEWTON	MO 59 S	3.2	REAR END	9/23/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	204 5	37.0386 1	- 94.31399	3	DIAMOND	6950	Straight
NEWTON	CRD BETHEL RD S	5.17	OUT OF CONTROL	11/7/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	171 5	36.8937 9	- 94.60689	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	MO 43 N	42.733	PEDALCYCLE	10/15/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	605	37.0472 4	- 94.51425	2	JOPLIN	1508 2	Straight
NEWTON	IS 44 W	284.09 1	REAR END	9/17/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	THU	28	37.0468 9	-94.474	2	JOPLIN	3828 8	Straight
NEWTON	CRD PELICAN RD S	0.246	OUT OF CONTROL	6/13/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SAT	0	37.0495 1	- 94.27737	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	IS 44 W	287.33 1	OUT OF CONTROL	10/25/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	123 5	37.0293 1	-94.5258	1	JOPLIN	2717 2	Curve
NEWTON	IS 44 W	283.77 5	PASSING	11/6/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	FRI	215 6	37.0476 5	- 94.46839	2	JOPLIN	3828 8	Straight
NEWTON	CST W 32ND ST E	3.254	CHANGING LANE	6/19/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	171 7	37.0549 8	-94.5332	2	JOPLIN	1005 6	Straight
NEWTON	RT NN S	1.902	OUT OF CONTROL	10/10/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	164 0	36.9951 2	- 94.49864	1	NON-CITY OR UNINCORPORATED	5057	Straight
NEWTON	CST 39TH ST E	0.249	OTHER	6/17/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	193 4	37.0465 8	- 94.51015	1	JOPLIN		Straight
NEWTON	LP 49 N	6.87	OUT OF CONTROL	12/20/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	140 4	37.0423 9	-94.4787	1	SILVER CREEK	5850	Straight
NEWTON	CST HILLDALE DR E	0.152	OUT OF CONTROL	11/27/202 0 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	152 4	36.8695	- 94.39436	1	NEOSHO		Curve
NEWTON	CST W SPRING ST E	0	OUT OF CONTROL	11/4/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	WED	231 8	36.8699 1	- 94.37229	1	NEOSHO		Curve
NEWTON	RT K E	5.26	AVOIDING	12/10/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	200 0	36.8879 9	- 94.54521	1	NON-CITY OR UNINCORPORATED	730	Straight
NEWTON	IS 49 N	23.982	OUT OF CONTROL	9/25/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	133 0	36.8355 2	- 94.41558	1	NON-CITY OR UNINCORPORATED	2385 3	Straight
NEWTON	RT A E	6.793	HEAD ON	6/28/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLOUDY	SUN	122 0	36.7632 3	- 94.09354	2	NON-CITY OR UNINCORPORATED	855	Straight
NEWTON	MO 43 S	60.473	PEDESTRIAN	11/22/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	MON	0	36.9896 6	- 94.55192	1	NON-CITY OR UNINCORPORATED	1140 0	Straight
NEWTON	MO 59 S	6.103	OUT OF CONTROL	12/22/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	135 1	36.9965 6	-94.3159	1	DIAMOND	7436	Straight
NEWTON	US 60 E	3.85	OUT OF CONTROL	9/8/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	120 5	36.8240 5	- 94.54949	1	NON-CITY OR UNINCORPORATED	8349	Curve
NEWTON	MO 43 S	55.849	RIGHT TURN RIGHT ANGLE COLLISION	12/25/202 1 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	192 0	37.0442 6	- 94.51461	2	JOPLIN	1634 9	Straight

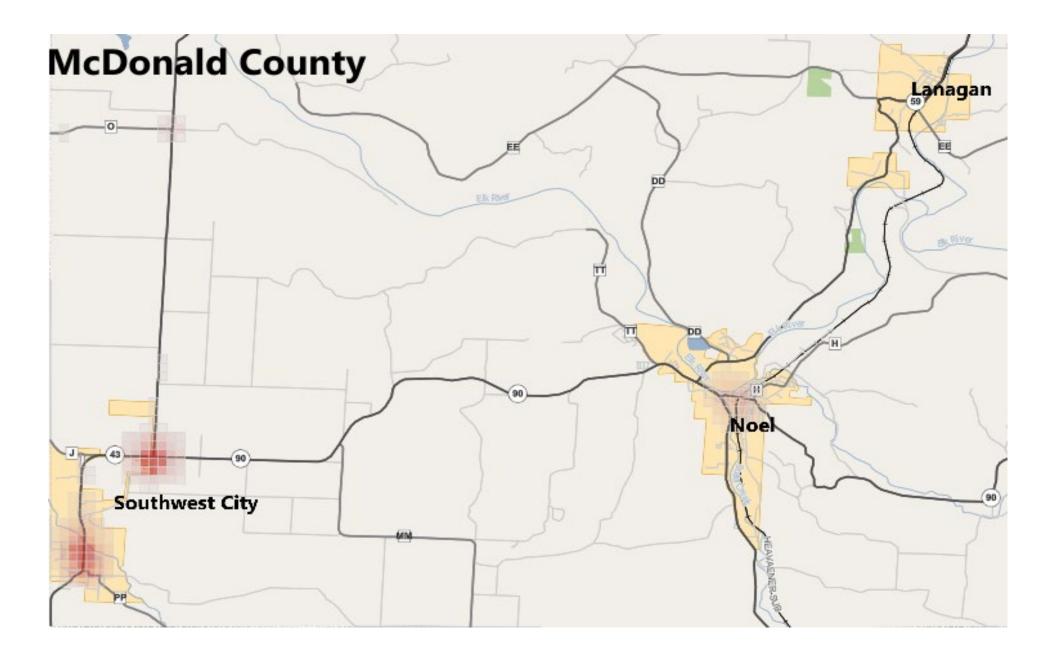

NEWTON	US 60 E	10.698	LEFT TURN	9/22/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	810	36.8395 1	- 94.42809	2	NON-CITY OR UNINCORPORATED	9898	Straight
NEWTON	RT V E	5.88	PEDESTRIAN	9/10/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	TUE	201 0	36.9952 3	-94.3318	1	NON-CITY OR UNINCORPORATED	2255	Straight
NEWTON	CRD NIGHTHAWK RD S	6.958	OUT OF CONTROL	12/5/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	181 2	36.9121 1	- 94.34383	1	NON-CITY OR UNINCORPORATED		Curve
NEWTON	US 60 E	28.619	OUT OF CONTROL	1/12/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	SAT	221 0	36.9197 2	- 94.16553	1	NON-CITY OR UNINCORPORATED	3577	Straight
NEWTON	IS 49 S	163.61 7	PASSING	11/25/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	162 5	36.7836 1	- 94.42265	2	NON-CITY OR UNINCORPORATED	1590 0	Straight
NEWTON	IS 49 N	32.357	OUT OF CONTROL	10/19/202 0 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	RAIN	MON	145	36.9536 2	- 94.42981	1	NON-CITY OR UNINCORPORATED	2540 2	Straight
NEWTON	CST W 32ND ST E	3.254	LEFT TURN	4/11/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	THU	737	37.0549 8	-94.5332	2	JOPLIN	1067 5	Straight
NEWTON	US 60 E	15.774	RIGHT ANGLE	10/4/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	152 0	36.8554 1	- 94.33958	2	NON-CITY OR UNINCORPORATED	9793	Straight
NEWTON	MO 86 E	9.419	OUT OF CONTROL	11/20/201 9 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	820	36.9104 9	- 94.52818	1	NON-CITY OR UNINCORPORATED	2566	Curve
NEWTON	CST OAKRIDGE DR S	0.125	PEDESTRIAN	11/21/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SUN	153 8	36.8630 6	- 94.37705	1	NEOSHO	2539	Curve
NEWTON	IS 44 W	286.45 2	CHANGING LANE	5/6/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	MON	183 3	37.0373 7	- 94.51347	5	JOPLIN	5215 9	Straight
NEWTON	LP 49 S	14.897	LEFT TURN	8/24/2019 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	DRY	CLEAR	SAT	118	37.0529 1	- 94.47841	2	JOPLIN	1993 1	Straight
NEWTON	MO 43 S	56.01	REAR END	11/27/202 1 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	151 7	37.0419 2	- 94.51472	2	JOPLIN	1634 9	Straight
NEWTON	US 60 E	15.781	RIGHT ANGLE	3/13/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	FRI	190 0	36.8554 5	- 94.33946	2	NON-CITY OR UNINCORPORATED	8099	Straight
NEWTON	CRD COYOTE DR S	2.988	OUT OF CONTROL	12/3/2021 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	154 8	37.0139	-94.5448	1	NON-CITY OR UNINCORPORATED	1105 4	Straight
NEWTON	US 60 E	5.536	RIGHT ANGLE	9/3/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	TUE	101 0	36.8304 4	- 94.52038	2	NON-CITY OR UNINCORPORATED	9609	Straight
NEWTON	US 60 E	15.774	RIGHT ANGLE	8/21/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	160 0	36.8554 1	- 94.33958	3	NON-CITY OR UNINCORPORATED	9001	Straight
NEWTON	MO 86 E	25.557	OUT OF CONTROL	11/6/2020 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	640	36.8747 7	- 94.29309	1	NON-CITY OR UNINCORPORATED	3885	Curve
NEWTON	IS 49 S	148.56 2	OUT OF CONTROL	8/8/2019 0:00	SER. INJURY	DAYLIGHT	WET	CLOUDY	THU	900	36.9978 9	- 94.43122	1	NON-CITY OR UNINCORPORATED	2860 6	Curve
NEWTON	MO 86 E	36.275	HEAD ON	10/4/2020 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	SUN	650	36.8473 3	-94.1238	2	NON-CITY OR UNINCORPORATED	1512	Straight
NEWTON	US 60 E	30.605	PARKING OR PARKED CAR	7/31/2019 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	WED	165 7	36.9187 5	- 94.12967	3	NON-CITY OR UNINCORPORATED	3577	Straight
NEWTON	MO 86 E	13.158	OUT OF CONTROL	8/12/2021 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	THU	135	36.8894	- 94.48103	1	NON-CITY OR UNINCORPORATED	1350	Curve

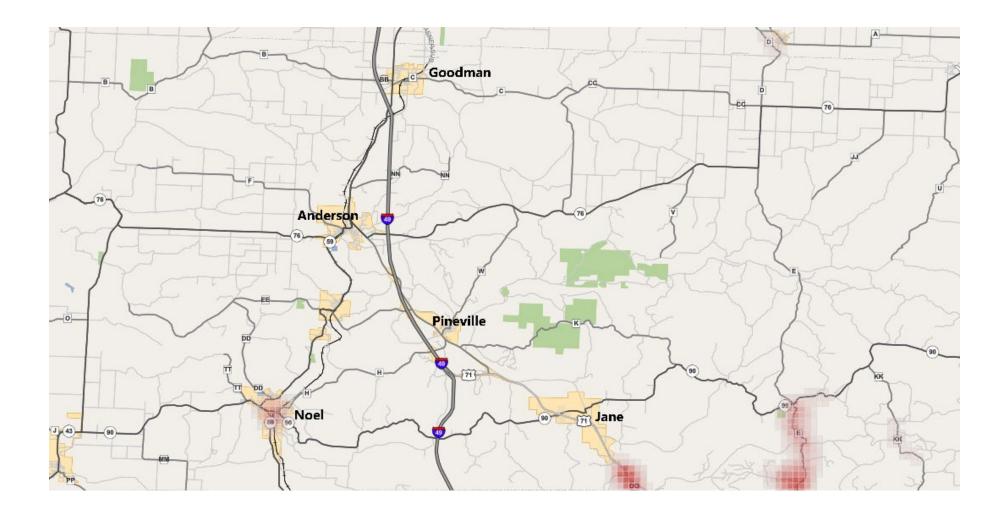

Straight	9984	NON-CITY OR UNINCORPORATED	2	- 94.55647	36.9544 2	185 1	WED	CLOUDY	DRY	DAYLIGHT	SER. INJURY	8/7/2019 0:00	SIDESWIPE	62.964	MO 43 S	NEWTON
Straight	541	NON-CITY OR UNINCORPORATED	1	- 94.36798	36.9451 9	151 5	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	6/24/2023 0:00	OUT OF CONTROL	0.465	RT MM E	NEWTON
Straight		NON-CITY OR UNINCORPORATED	1	- 94.18377	36.7597 7	131 8	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	6/16/2023 0:00	OUT OF CONTROL	4.454	CRD TIGER RD S	NEWTON
Straight	2767 4	JOPLIN	2	- 94.47843	37.0522 5	163 3	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/31/2023 0:00	LEFT TURN	14.942	LP 49 S	NEWTON
Straight	3154	NEOSHO	1	- 94.35819	36.8651 7	221 9	MON	CLEAR	DRY	DARK W/ STREET LIGHTS ON	SER. INJURY	6/5/2023 0:00	OUT OF CONTROL	21.599	MO 86 E	NEWTON
Straight	3442	NON-CITY OR UNINCORPORATED	2	- 94.08176	36.9178 8	855	THU	CLOUDY	DRY	DAYLIGHT	SER. INJURY	4/13/2023 0:00	LEFT TURN RIGHT ANGLE COLLISION	33.257	US 60 E	NEWTON
Straight	4351	NON-CITY OR UNINCORPORATED	2	-94.4127	36.9097 1	215 0	WED	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	8/2/2023 0:00	HEAD ON	4.459	MO 175 S	NEWTON
Straight		SENECA	2	- 94.61472	36.8455 2	122 2	THU	CLOUDY	DRY	DAYLIGHT	SER. INJURY	7/6/2023 0:00	PEDALCYCLE	0.04	CST OSAGE ST E	NEWTON
Straight	1840	NON-CITY OR UNINCORPORATED	1	- 94.53494	36.9315 8	143 5	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	7/25/2023 0:00	OUT OF CONTROL	7.836	MO 86 E	NEWTON
Curve	498	NON-CITY OR UNINCORPORATED	1	- 94.24999	36.7937 7	112 0	TUE	CLEAR	DRY	DAYLIGHT	SER. INJURY	4/18/2023 0:00	OUT OF CONTROL	9.515	RT D E	NEWTON
Straight	4750	NON-CITY OR UNINCORPORATED	2	- 94.35361	36.8966 7	826	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/6/2023 0:00	SIDESWIPE	4.95	BU 60 E	NEWTON
Straight	6517	NON-CITY OR UNINCORPORATED	2	- 94.40625	36.7778 5	192 5	MON	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	10/2/2023 0:00	HEAD ON	24.144	MO 59 S	NEWTON
Straight	3094 3	JOPLIN	3	- 94.59369	37.0016 1	544	FRI	CLEAR	DRY	DARK W/ STREET LIGHTS ON	SER. INJURY	9/1/2023 0:00	REAR END	1.401	IS 44 E	NEWTON
Straight		NEOSHO	1	-94.3724	36.8703 2	200 3	SUN	CLEAR	DRY	DAYLIGHT	SER. INJURY	8/27/2023 0:00	OUT OF CONTROL	0.041	CST SPRING HILL S	NEWTON
Straight	298	NON-CITY OR UNINCORPORATED	1	- 94.42591	36.7745 9	221 3	TUE	CLEAR	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	8/8/2023 0:00	OUT OF CONTROL	1.399	CRD SORREL RD E	NEWTON
Curve	222	NON-CITY OR UNINCORPORATED	1	- 94.17461	36.9425 6	171 0	FRI	CLOUDY	DRY	DAYLIGHT	SER. INJURY	8/25/2023 0:00	OUT OF CONTROL	4.638	RT W S	NEWTON
Straight	5984	NON-CITY OR UNINCORPORATED	2	- 94.31784	36.8752 2	164 5	FRI	CLOUDY	DRY	DAYLIGHT	SER. INJURY	10/13/202 3 0:00	RIGHT ANGLE	17.817	US 60 E	NEWTON
Straight	1906 1	NON-CITY OR UNINCORPORATED	2	- 94.41556	36.8409 5	191 4	SUN	RAIN	ICE	DARK W/ STREET LIGHTS OFF	SER. INJURY	1/29/2023 0:00	RIGHT ANGLE	159.64 1	IS 49 S	NEWTON
Straight	446	JOPLIN	1	- 94.54147	37.0334 1	130 0	FRI	CLEAR	DRY	DAYLIGHT	SER. INJURY	9/29/2023 0:00	OUT OF CONTROL	0.643	CRD RIVERSIDE DR E	NEWTON
Curve	3050	NON-CITY OR UNINCORPORATED	2	-94.528	36.9078 8	153 0	MON	CLEAR	DRY	DAYLIGHT	SER. INJURY	10/16/202 3 0:00	RIGHT ANGLE	9.602	MO 86 E	NEWTON
Curve	2924	REDINGS MILL	1	- 94.51194	37.0160 7	224 8	SAT	CLOUDY	DRY	DARK W/ STREET LIGHTS OFF	SER. INJURY	8/12/2023 0:00	OUT OF CONTROL	0.257	RT NN S	NEWTON
Curve	2319	NON-CITY OR UNINCORPORATED	1	- 94.49132	37.0165 8	830	SAT	CLEAR	DRY	DAYLIGHT	SER. INJURY	11/11/202 3 0:00	OUT OF CONTROL	1.409	CRD RIVER ROAD E	NEWTON

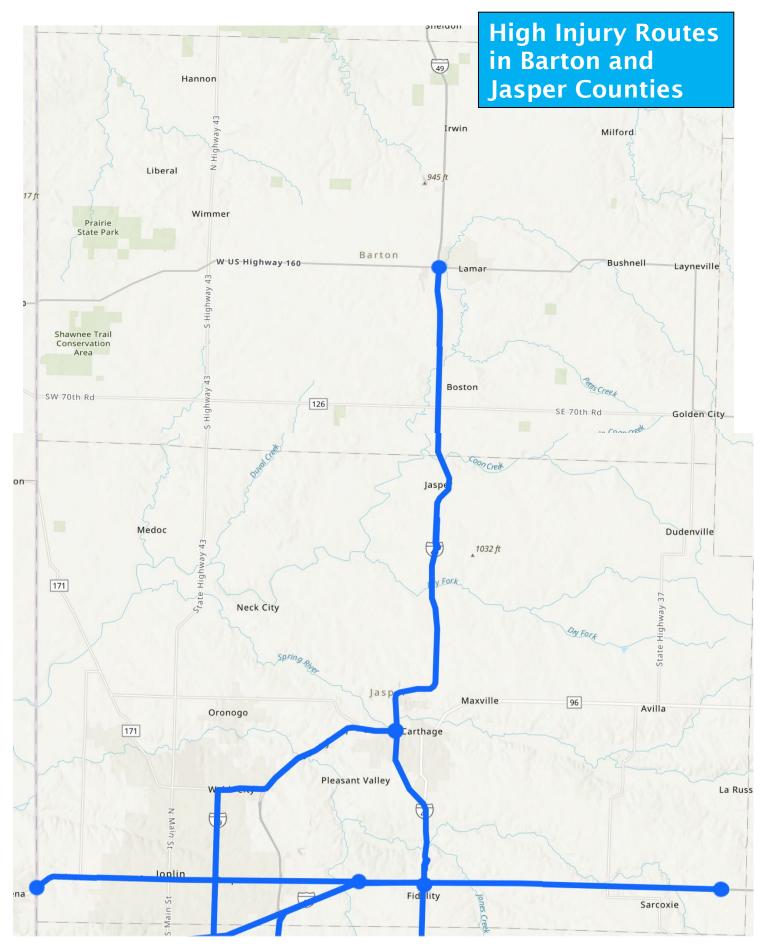

NEWTON	CRD QUINCE RD E	6.296	OUT OF CONTROL	10/6/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	153 2	36.7948 3	- 94.11249	1	NON-CITY OR UNINCORPORATED		Straight
NEWTON	IS 49 S	152.62 3	RIGHT ANGLE	3/24/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	FRI	541	36.9394 1	- 94.43025	2	NON-CITY OR UNINCORPORATED	2612 0	Straight
NEWTON	BU 60 E	5.487	OUT OF CONTROL	11/21/202 3 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	WET	CLOUDY	TUE	181 4	36.8999 9	- 94.34485	1	NON-CITY OR UNINCORPORATED	4750	Straight
NEWTON	RT JJ S	0	OUT OF CONTROL	11/5/2023 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLEAR	SUN	215 0	36.9903 2	- 94.07928	1	NON-CITY OR UNINCORPORATED	222	Straight
NEWTON	CST W MCCORD ST E	0.287	RIGHT ANGLE	11/3/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	FRI	123 0	36.8709 7	- 94.37674	2	NEOSHO	2248	Straight
NEWTON	MO 86 E	0.277	OUT OF CONTROL	12/16/202 3 0:00	SER. INJURY	DARK W/ STREET LIGHTS ON	WET	FOG/MIST	SAT	232 5	37.0334	- 94.51515	1	JOPLIN	8337	Straight
NEWTON	MO 86 E	15.835	OUT OF CONTROL	12/12/202 3 0:00	SER. INJURY	DARK W/ STREET LIGHTS OFF	DRY	CLOUDY	TUE	212 0	36.8807 1	- 94.44118	1	NON-CITY OR UNINCORPORATED	3643	Straight
NEWTON	US 60 E	14.853	RIGHT ANGLE	4/8/2023 0:00	SER. INJURY	DAYLIGHT	DRY	CLEAR	SAT	132 5	36.8507 1	- 94.35514	2	NON-CITY OR UNINCORPORATED	9720	Straight

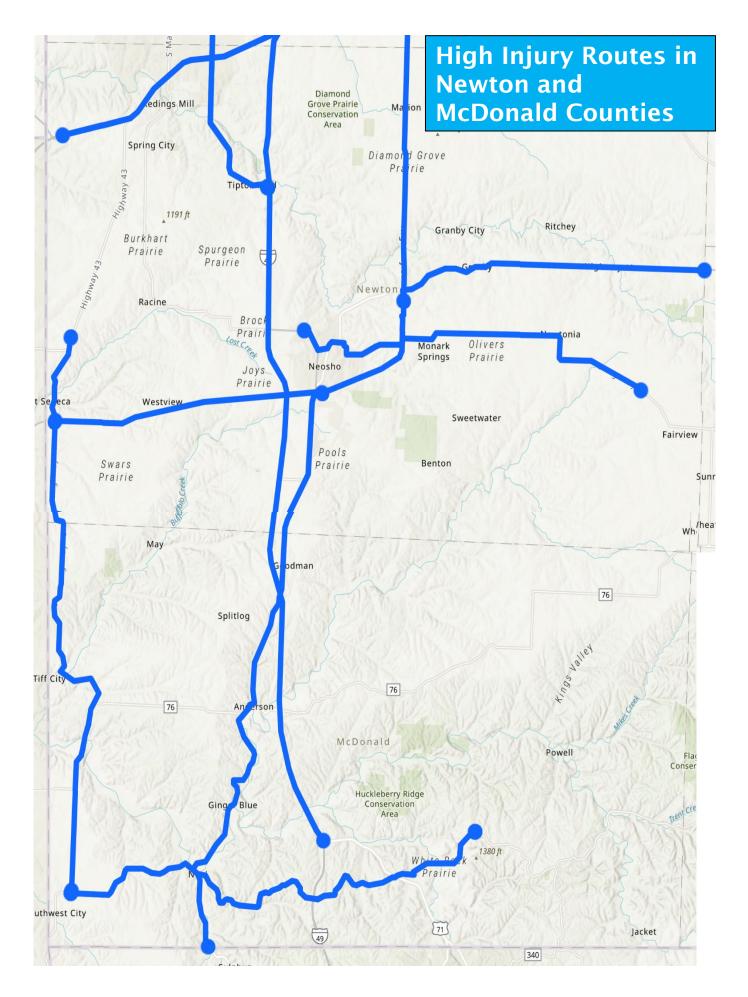

Appendix B: Heat Maps and High-Injury Network Visualizations

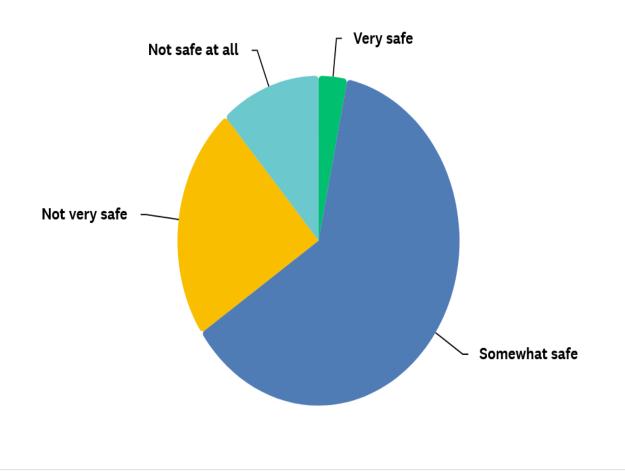








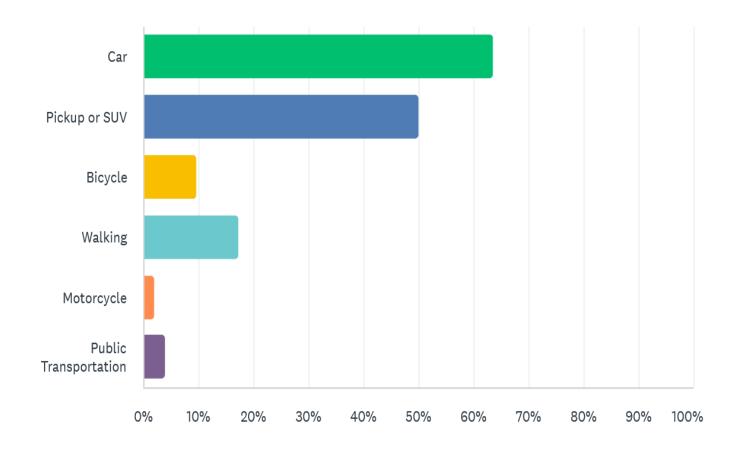




Appendix C: Traffic Safety Survey Data

How safe do you feel on the roads in Southwest Missouri?

Answered: 61 Skipped: 0

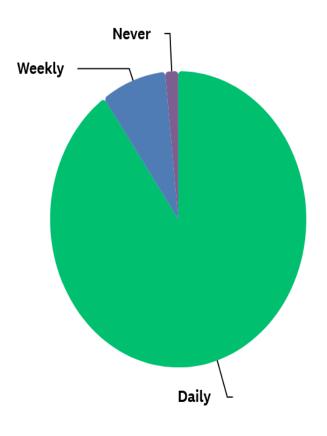

Southwest Missouri Traffic Safety Survey

丫(0)

...

How do you most frequently travel around the Southwest Missou...

Answered: 52 Skipped: 9

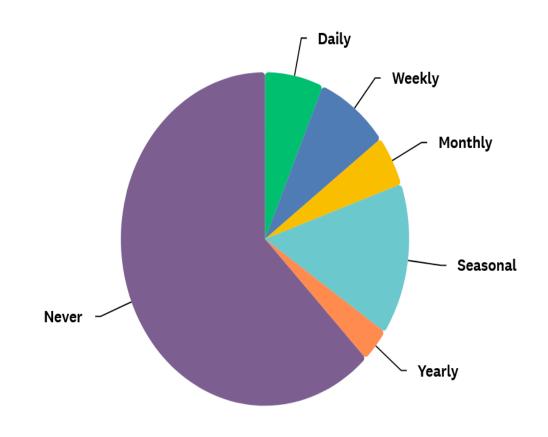

Southwest Missouri Traffic Safety Survey

了(0)

...

How often do you use an automobile or truck for transportation?

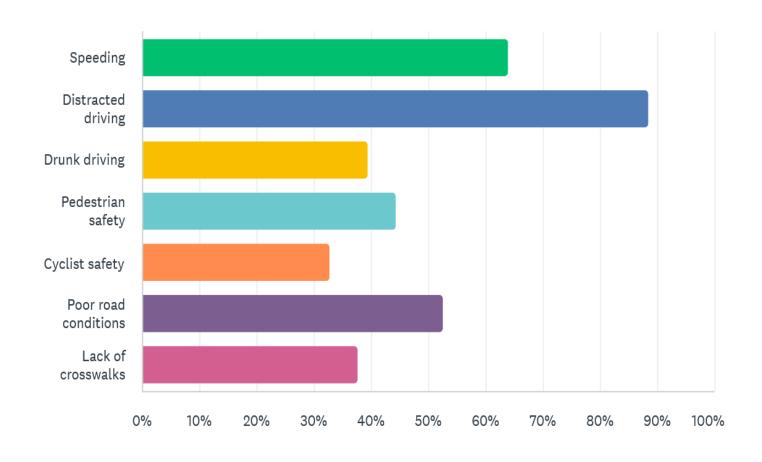
Answered: 61 Skipped: 0



Southwest Missouri Traffic Safety Survey

了(0)

How often do you Bike or Walk for transportation?


Answered: 61 Skipped: 0

Southwest Missouri Traffic Safety Survey

丫(0)

What traffic safety issues are you most concerned about? Select ...

Answered: 61 Skipped: 0

Southwest Missouri Traffic Safety Survey

⋎(0)

...

What specific locations in our community do you feel are the most dangerous for traffic safety?

Lamar city streets, including park	
160 Highway needs sidewalks from stoplight to stoplight in Lamar	
E 7th and Irwin St	
all, its the skill level of the drivers and attention span issues.	
I think most of them are descent.	
Baker	
Hwy 160/12th street where there is no sidewalk	
Hwy 160	
Range Line, 32nd St, N Main St Road (Joplin)	
New roundabout on HH	

The school zones in Carthage mo. especially by Steadley, Carthage intermediate center, high school, Fairview, junior high

Fir Road and Chapel Road

Fir Road and Chapel Road in Carthage

Intersections of two roads greater than three lanes.

Rangeline

Chapel & HH, Grand & George E Phelps, pedestrian walking along Airport Fairview and Baker

Chapel road and fir road (by Carthage intermediate center), county road 170 and fir road. Honestly most spots in fir road that do not have turn lanes.

The intersection of Chapel Road and Fir Road

Rural roads

Fir Road and Chapel intersection

Hwy 59 Diamond to Carthage Mo

Chapel road and fir road in Carthage; River Street and surrounding roads of Carthage High School

Highways with no sidewalks

Around schools

Fir & Chapel, Zora with the gravel trucks & pot holes,

49 highway

Chapel and HH intersection is dangerous.

The intersection by Carthage Intermediate Center.

Intersection at the CIC

Inside Carthage: stated above. Gum, harmony and cr118 are raceways.

i44; 96 from Carthage to Springfield (consider adding alternating passing lanes), Chapel and Fir Road intersection in Carthage

HH Highway and Chapel Road near schools. Overpass at HH over I49. All of I44 highway.

The clover leaf at I-49 & I-44. The high speeds allowed on I-44 are ridiculous. The area on HH/Fir Rd in front of Steadley Elementary, Carthage Intermediate Center, and now the new roundabout at the Highway/hospital/industrial park. The new roundabout will make things worse for parent pick up and drop off at the schools. And once the industrial park is built out, it will be worse.

HH and Chapel Road and 4th and Garrison

The intersection at our Carthage Intermediate Center on HH hwy.

Carthage...HH hwy & Chapel Road at the Intermediate school

Everywhere but quite often on HH HWY

Poor Road Conditions in Carterville Missouri. Poor road Conditions on a few of the overpasses on 249 at the Webb City Exchange

Joplin city limits

County highways

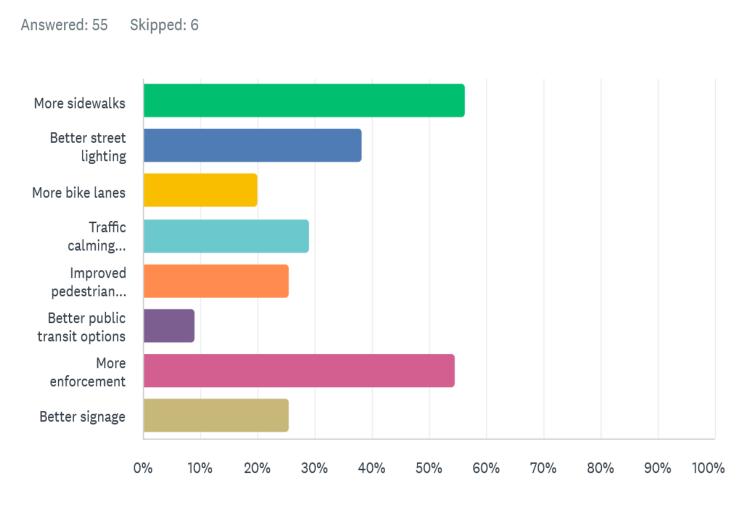
lettered roads

Right by the school. So many people speeding in that specific area.

32nd street & Rangeline. Intersections are higher risk.

Highway 59 and FF Hwy intersection

Highway 171, east and west of Highway 43

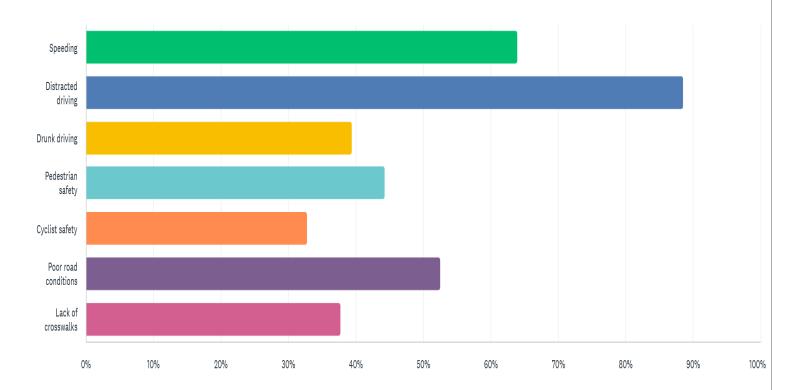

Everywhere. There are lots of people who walk through all the roads in McDonald County because there is a lack of sidewalks for people to walk safely from place to place, especially when trying to get from town to town.

small state roads such as H/K, M/N, D and even 171 $\,$

Intersection of Highway FF and Highway 59

NO sidewalks on the Neosho Blvd

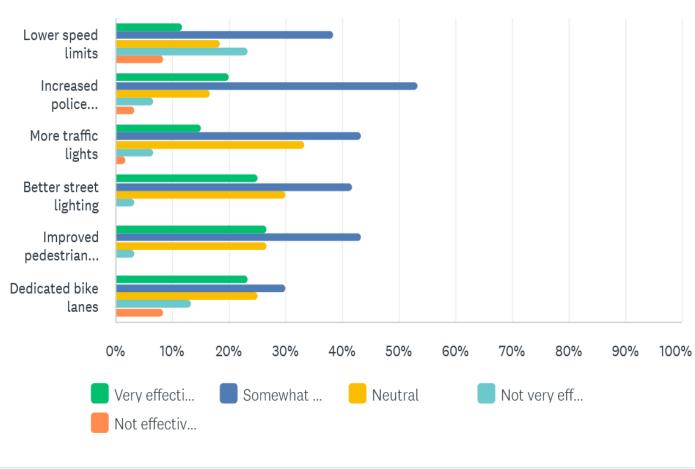
What improvements do you think would most improve traffic saf...



Additional Comments:

- Lack of good lighting on off on Ramps on interstates.
- People running red lights
- Illegal immigrant drivers without licenses that do not understand how our road ways are designed
- No shoulders on most rural roads
- Releasing DWI Offenders after multiple offenses
- In town: red light and stop sign runners Fairview west to east. They don't even slow down. All ages. River and 13th south to north -same. In both cases they don't even know I'm sitting at the clothes stop sign or at a green light on my side. It's not necessarily high school age either.
- Shoulder less roads
- Passing illegally
- poor line of sight intersections, narrow lanes, no shoulders, dangerous freeway exits
- We need off-street bike paths

What traffic safety issues are you most concerned about? Select all that apply


Additional Comments:

- Lights or roundabouts at dangerous intersections
- Stoplight at Carthage CIC corner
- Stoplight A light, a four way stop or roundabout is needed at HH and Chapel
- I am all for public transit. Not too many used the bike lanes.
- Lower speed limit. Stoplight at chapel and HH. More lanes on 44. Designated truck lane in 44.
- reduced speed limits
- Better roads
- Correct poor/no line of sight intersections

****(0)

...

Answered: 60 Skipped: 1


Southwest Missouri Traffic Safety Survey

...

了(0)

How often do you see traffic violations in your area?

Answered: 61 Skipped: 0

Southwest Missouri Traffic Safety Survey

了(0)

Do you have any additional suggestions or comments on how to i...

Answered: 16 Skipped: 45

Please make an effort to have more public transit connections across the region, and link up trails to Arkansas' trails network.

Street pavement improvements

Make walking safer! Lamar has terrible walk ability!

REMOVE ILLEGAL IMMIGRANTS FROM THE COUNTY, STATE, AND NATION

Need to start charging a pro-rated fee for every month a license plate has expired.

Cut back tree limbs/shrubs that interferes with drivers viewpoint.

No

At the very essence of the issue, not allowing new roads constructed in city limits to exceed 35 mph and have greater than 10-foot lane widths.

More police needed

Slow down

Street lighting: out of city limits but it won't stop the speeding on Gum. Stagger Steadley and CIC dismissals. That is a death waiting to happen. The new Roundabout won't solve the traffic issue.

Enforcement of speeding on the interstates.

Better road surfaces, reevaluation of kinda of traffic lights, brighter lights at pedestrian crossings.

Limit driving distractions. improve driver attitude

no

A traffic signal at intersection of 59 and J highway in Diamond

Appendix D: Resolutions and Support Documents

RESOLUTION NO. 2047

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF CARTHAGE, MISSOURI ADOPTING A VISION ZERO SAFETY ACTION PLAN FOR THE CITY AND DECLARING A COMMITMENT TO MAINTAINING ZERO ROADWAY FATALITIES AND SERIOUS INJURIES WITHIN THE CITY LIMITS BY JUNE 2035.

WHEREAS, Section 24112 of the Infrastructure Investment and Jobs Act (Pub. L. 117-58, November 15, 2021; also referred to as the "Bipartisan Infrastructure Law" or "BIL") authorized and appropriated \$1 billion to be awarded by the Department of Transportation for FY 2022 for the Safe Streets and Roads for All (SS4A) grant program to improve roadway safety by significantly reducing or eliminating roadway fatalities through safety action plan development and implementation; and

WHEREAS, The purpose of the SS4A grants are to improve roadway safety by significantly reducing or eliminating roadway fatalities and serious injuries through safety action plan development and implementation focused on all users, including pedestrians, bicyclists, public transportation users, motorists, personal conveyance and micromobility users, and commercial vehicle operators. The program provides funding to develop the tools to help strengthen a community's approach to roadway safety and save lives and is designed to meet the needs of diverse local, Tribal, and regional communities that differ dramatically in size, location, and experience administering federal funding; and

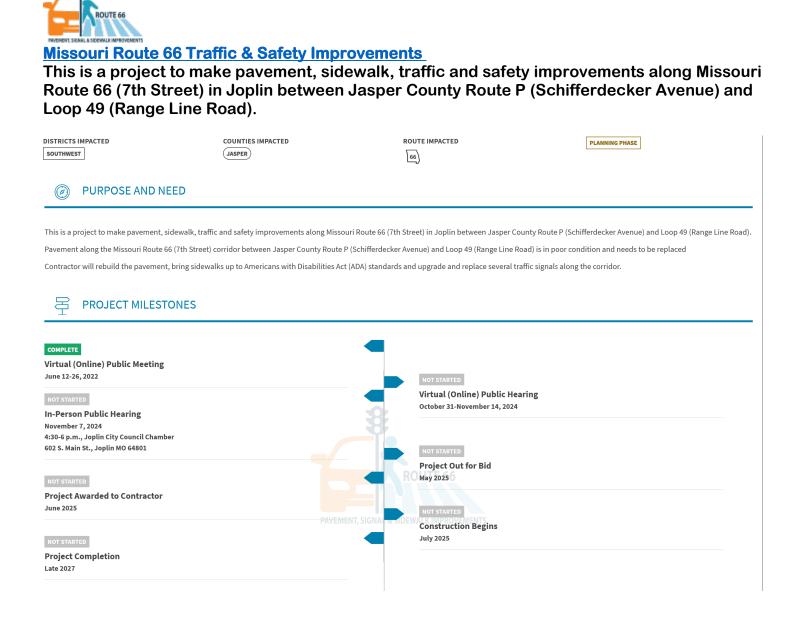
WHEREAS, the City of Carthage is committed to maintaining zero roadway fatalities within its city limits, a commitment which can be achieved through the adoption of a safety action plan; and

WHEREAS, The City of Carthage passed Ordinance 23-36 on May 23, 2023, executing an agreement between the City of Carthage, USDOT, and FHWA for the development of a new comprehensive safety action plan known as Safe Street and Roads for All

WHEREAS, The City of Carthage engaged with Zanevan Engineering to render technical and professional services to develop a Safety Action Plan for the City of Carthage; and

NOW, THEREFORE, BE IT RESOLVED BY THE COUNCIL OF THE CITY OF CARTHAGE, JASPER COUNTY, MISSOURI, THE MAYOR CONCURRING HEREIN, AS FOLLOWS:

That the City hereby adopts a Vision Zero Safety Action Plan for the City and declares a commitment to maintaining zero roadway fatalities and serious injuries within the City limits by June 2035.


PASSED AND APPROVED THIS <u>13th</u> DAY OF <u>AUGUST</u>, 2024.

ATTEST:

Miranda Deal City Clerk

Appendix E: Project List (2024-2025)

Current and Planned Infrastructure Projects

Missouri Route 43 Bridge Replacement over Elk River in McDonald

DISTRICTS IMPACTED SOUTHWEST	COUNTIES IMPACTED	ROUTE IMPACTED	PLANNING PHASE
COMPLETE Virtual (Online) Public Meeting May 26-June 9, 2024 NOT STARTED Project Awarded to Contractor May 7, 2025 NOT STARTED Construction Complete December 1, 2025		NOT STARTED Project Out for Bid March 6, 2025 NOT STARTED Construction Begins Spring 2025	

U.S. Route 60 Intersection Improvements in Barry and Newton

Contractor will make intersection improvements at six (6) locations along U.S. Route 60 in Newton and Barry counties.

DISTRICTS IMPACTED			PLANNING PHASE
Southeast	BARRI (NEWTON)	60 97 CC HAMMER ROAD HH	+ 4 MORE
COMPLETE Monett Public Meeting			
June 25, 2024			
4:30-6 p.m., Monett City Park Casino 101 S. Lincoln Ave., Monett, MO 65708		COMPLETE	
		Neosho Public Meeting July 9, 2024	
	Be	4:30-6 p.m., Lampo Center 500 E. Spring St., Neosho, MO 64850	
NOT STARTED Project Out for Bid		tersection	
November 15, 2024		NOT STARTED	
NOT STARTED		Vewton, Bo Project Awarded to Contracto	r
Construction Begins		December 4, 2024	
Spring 2025			
Missouri Route 97 roundabout construction begins	Spring 2026		

Route HH Roundabout Construction at Dr. Russell Smith Way in Jasper

DISTRICTS IMPACTED	COUNTIES IMPACTED	ROUTE IMPACTED	IN PROGRESS
COMPLETE Accepting Bids November 30, 2023		COMPLETE	
IN PROGRESS Construction Begins May 2024		Project Awarded to Contractor January 2024	
		Project Completion February 22, 2025	

Interstate 44 Bridge Rehabilitation in Newton

DISTRICTS IMPACTED	COUNTIES IMPACTED	ROUT	'E IMPACTED)	PLANNING PHASE
Project Letting March 15, 2024				
Construction Begins Spring 2024	-	_	Project Awarded to Contractor April 3, 2024	
			Project Completion November 22, 2024	

Davis Boulevard Road Relocation at Route FF in Jasper County

DISTRICTS IMPACTED	COUNTIES IMPACTED	ROUTE IMPACTED DAVIS BOULEVARD	PLANNING PHASE
Public Meeting In-Person Public Meeting: December 12, 2023, Jopli Online Public Meeting: December 12-26, 2023	n Public Library	Project Out for Bid	
Project Awarded to Contractor January 2025		December 13, 2024	
Project Completed Fall 2025		Construction Begins Spring 2025	

<u>Missouri Route 96 Bridge Replacement in Jasper</u> This project will replace the Missouri Route 96 (Inca Road) bridge in Jasper County over Missouri Route 171 west of Carthage.

DISTRICTS IMPACTED	COUNTIES IMPACTED	ROUTE IMPACTED	PLANNING PHASE
Virtual Public Meeting October 2-16, 2023 Virtual (Online) Public Meeting held on the Missouri	Route 96 Bridge Replacement Project		
Projected Start of Construction 2024		Project Awarded to a Contractor April 2024	

I-49 Pavement Replacement Project

Remove and replace 1.4 miles of concrete pavement on I-49 between I-44 and a point south of Jasper County Route FF.

DISTRICTS IMPACTED

COUNTIES IMPACTED

Project Facts:

- Remove and replace 1.4 miles of concrete pavement on I-49 between I-44 and a point south of Jasper County Route FF (32nd Street) in Joplin
- Concrete is part of original pavement built as part of I-49 construction in 1994
- Concrete deteriorating and being replaced due to high traffic volumes

Construction: Week of April 5 until early August

Total Project Cost: \$6.2 million

IN PROGRESS

Traffic Impacts:

Phase 1:

- All lanes of southbound I-49 CLOSED 'round the clock for up to 16 days for pavement
- replacement
- All lanes of northbound I-49 open
- Route FF (32nd Street) southbound ramps will be CLOSED in the direction of the work being done
- Expect increased travel times
- Drivers will be directed to signed detour using Business Loop 49, I-44 and Missouri Route 59

Phase 2:

- All lanes of northbound I-49 CLOSED 'round the clock for up to 16 days for pavement
- replacement
- All lanes of southbound I-49 open
- Route FF (32nd Street) northbound ramps will be CLOSED in the direction of the work being done
- Expect increased travel times
- Drivers will be directed to signed detour using Business Loop 49, I-44 and Missouri Route 59

Jasper County Route U/Spring River Bridge Rehabilitation

This project would replace existing bridge deck/driving surface and install new barrier walls and replace expansion joints and repair other bridge components. Bridge built in 1966 and deck/driving surface experiencing severe deterioration.

DISTRICTS IMPACTED	COUNTIES IMPACTED	PLANNING PHASE	
Project Facts:			Traffic Impacts:
Replace existing bridge deck/driving	surface and install new barrier walls		Route U CLOSED at the bridge during construction
Replace expansion joints and repair other bridge components			County roads/driveways remain open on either side of bridge
• Bridge built in 1966			• Signed detour using Route F, Route 37 and Route 96
 Bridge deck/driving surface experience 	cing severe deterioration		
 Bridge carries 442 vehicles per day 			

Construction: Fall 2019 to Fall 2020 (Once bridge is closed, contractor crews have four (4) months to complete work and reopen bridge.)

Estimated Total Project Cost: \$1.1 million

MODOT Prioritization Project List (2024-2025)

ROAD AND BRIDGE PROJECTS

Project #	County:	Location:	Project Description:
HT001	Newton	MO 171, MO 249	Interchange and ramp improvements for potential interstate designation from I-49 in Carthage to I-44 in Joplin
HT002	jasper	HH and Chapel Rd	Intersection improvements
НТ003	Jasper	M Hwy (Baseline)	Roadway needs to be widened, shoulders, and rumble strips
НТ004	Newton	The bridge on old E highway	Bridge replacement
НТ005	Newton	NN Hwy at Iris road	Road repair on section of NN
нтооб	McDonald	MO. highway 76 west of Anderson	Road needs widened to accommodate truck traffic increase
НТ007	Newton	I44 westbound at Exit 4	Passing lane added, or dedicated exit lane.
НТ008	Jasper	St. Hwy 96 and O Hwy. to the north	Road needs raised to prevent flooding
НТ009	Barton	highway 160 and SE 30th Lane	Bridge is too narrow for its close proximity to highway 160.
НТ010	Jasper	Rte 96 from 43 to east of O.	Road widening and/or shoulder install
HT011	Jasper	Exit 18 on I-44.	Extend on-ramp heading East from North I-49. Extend Southbound off-ramp to Hwy 59 at Burr Oak Road
HT012	Newton	Hwy 59 at Cullum St	Introduce traffic calming measures, lights, speed signs
HT013	Jasper	Hwy 59 at RT FF	Intersection improvements
HT014	Jasper	I49 northbound ramp to MO 571	Traffic control measures
HT015	Jasper	HH Hwy and MO 571	Improvements to intersection

BIKE AND PEDESTRIAN PROJECTS

Project #	County:	Location	Project Description
HT001	Jasper	37 Hwy and 17th (Sarcoxie)	Crosswalk on Hwy 37/High
HT002	Newton	Hwy 60 at Cole and Pennsylvania streets (Granby)	Improve and add crosswalks
HT003	Newton	A Hwy to Fountain (Stella)	Sidewalk connecting school to Fountain
HT004	Jasper	37 Hwy and 14th (Sarcoxie)	Crosswalk on Hwy 37/High
HT005	McDonald	MO 59 at MO 90 (Noel)	Crosswalk
HT006	Newton	Rte. A and Ozark St (Stella)	Flashing light Hwy A and Ozark St
HT007	Newton	Redings Mill Bridge	Redings Mill Bridge is a landmark and in need of repair

Appendix F: Terms, Acronyms, and Definitions

Acronym	Full Term	Definition
AARP	American Association of Retired Persons	A non-profit organization focused on issues affecting those over 50 years old, including healthcare, employment, and retirement planning.
ACS	American College of Surgeons	A professional organization that sets standards for surgical education and practice, aiming to improve the quality of care for surgical patients.
ATLS	Advanced Trauma Life Support	A training program developed by the American College of Surgeons that provides systematic, concise training for the early care of trauma patients.
CDC	Centers for Disease Control and Prevention	The national public health institute in the United States that conducts research and provides information on health and safety to protect the well-being of citizens.
CDBG	Community Development Block Grant	A federal program that provides grants to local governments to support community development projects that improve economic development, housing, and infrastructure.
FHWA	Federal Highway Administration	A division of the U.S. Department of Transportation that administers federal funding to support the design, construction, and maintenance of the nation's highways.
FTA	Federal Transit Administration	An agency that provides financial and technical assistance to local public transit systems, promoting the use and development of public transportation across the U.S.
HIN	High-Injury Network	A network of roads and streets identified as having a higher-than-average number of traffic-related injuries and fatalities, often targeted for safety improvements.
HSTCC	Harry S. Truman Coordinating Council	A regional council dedicated to planning and coordinating development initiatives such as transportation, housing, and public services within the southwest Missouri region.
IIHS	Insurance Institute for Highway Safety	An independent, non-profit scientific and educational organization dedicated to reducing the losses from motor vehicle

		crashes through research and evaluation of vehicle safety standards.
IIJA	Infrastructure Investment and Jobs Act	A comprehensive federal law enacted to provide significant investments in the nation's infrastructure, including roads, bridges, transit systems, and broadband expansion.
JATSO	Joplin Area Transportation Study Organization	An organization that develops and oversees transportation plans and strategies to address regional mobility needs and safety concerns within the Joplin metropolitan area.
MCHD	McDonald County Health Department	A local public health department responsible for promoting and protecting the health of residents in McDonald County through education, healthcare programs, and public health services.
MIEMSS	Maryland Institute for Emergency Medical Services Systems	A state agency responsible for coordinating and overseeing Maryland's emergency medical services, including trauma and specialty care facilities.
MoDOT	Missouri Department of Transportation	The state department responsible for the construction, maintenance, and operation of transportation infrastructure, including highways, bridges, and public transit in Missouri.
NHTSA	National Highway Traffic Safety Administration	A federal agency under the U.S. Department of Transportation focused on achieving the highest standards of road safety through enforcing vehicle performance standards and conducting traffic safety campaigns.
RSCP	Road Safety Comprehensive Plan	A strategic framework designed to guide efforts to improve road safety by addressing key factors such as driver behavior, infrastructure, and enforcement practices.
SS4A	Safe Streets for All	A nationwide initiative aimed at reducing traffic fatalities and serious injuries on roadways through comprehensive safety measures, data analysis, and community engagement.
SVI	Social Vulnerability Index	A tool developed by the CDC that helps identify communities that may require additional support in times of disaster or public health emergencies, based on social and economic factors.

TAC TEAP	Technical Advisory Committee Traffic Engineering Assistance Program	A committee composed of experts that provides technical oversight, recommendations, and advice on the planning and execution of specific projects or policy initiatives. A program designed to help local governments with traffic engineering and analysis, offering support for studies that aim to enhance traffic flow and safety.	
USDOT	United States Department of Transportation	The federal executive department responsible for establishing and overseeing national transportation policies, including highway, rail, and air travel.	
Vision Zero	Vision Zero	A global strategy that seeks to eliminate all traffic fatalities and severe injuries while ensuring safe, healthy, and equitable mobility for all road users.	
WHO	World Health Organization	A specialized agency of the United Nations that focuses on international public health, leading efforts to combat diseases and improve global health standards.	
Vision Zero (Expanded Definition)	Vision Zero	Vision Zero is more than just a strategy—it is a commitment to fundamentally change the way road safety is approached. Originating in Sweden in 1997, Vision Zero acknowledges that human error is inevitable and that the transportation system must be designed to minimize the consequences of these errors. The strategy focuses on proactive measures, shared responsibility, a safe system approach, and an equity focus to protect vulnerable road users like pedestrians, cyclists, and lower-income communities.	
Safe System Approach (Expanded Definition)	Safe System Approach	The Safe System Approach complements Vision Zero by fostering resilience in the transportation network. It emphasizes safe road users, safe vehicles, safe speeds, safe roads, and post-crash care, ensuring that transportation systems are	

Pedestrian and Bicycle Safety	Pedestrian and Bicycle Safety	built to tolerate human error without severe consequences. A focus within Vision Zero that emphasizes protected bike lanes, pedestrian crossings, and traffic calming measures to safeguard non-motorized road users.	
Traffic Calming Measures	Traffic Calming Measures	Engineering strategies used to slow down traffic and enhance road safety, including speed humps, roundabouts, and narrowed lanes.	
High-Injury Network (HIN)	High-Injury Network	A framework for prioritizing streets with a high concentration of severe traffic incidents, guiding targeted safety improvements.	

Appendix G: Emergency Response and Medical Resources

G.1 Traffic Crash Trauma Network

In the context of traffic crash trauma, regional trauma networks in Southwest Missouri coordinate healthcare and emergency response services to ensure that crash victims receive timely, specialized care. By linking hospitals, EMS providers, public health agencies, and air transport, these networks ensure that patients are triaged, treated, and transferred efficiently to minimize time from crash to critical intervention.

Levels of Trauma Care for Traffic Injuries

Level I Trauma Centers provide comprehensive care for all forms of trauma, including the severe injuries associated with high impact traffic crashes. Although Southwest Missouri does not have a Level I center, networks with nearby urban centers, such as Kansas City, facilitate transfers for the most critical cases.

Level II Trauma Centers in Southwest Missouri, including Freeman Health System and Mercy Hospital Joplin in Jasper County, can manage many traffic related injuries requiring advanced surgical and critical care services.

Level III and IV Trauma Centers focus on stabilizing patients from crashes and coordinating transfers as needed to higher level centers.

Traffic Crash Specific Protocols for EMS and Hospitals

EMS providers use trauma protocols designed to assess the severity of traffic injuries, such as head trauma, fractures, or internal injuries, which helps them determine the level of trauma care needed. Clear transfer protocols allow EMS to transport patients directly to Level II trauma centers or arrange for air transport if more rapid, specialized intervention is required.

EMS Collaboration and Rapid Response

EMS units in Jasper, Newton, Barton, and McDonald counties respond first at crash sites, often performing initial stabilization and coordinating directly with trauma centers. They play a vital role in traffic crash trauma care, particularly in rural areas where transport times to trauma centers may be longer.

Air Transport Services for Severe Cases

Air transport services are crucial for crash victims in rural Southwest Missouri, where road transport to trauma centers may take longer. Helicopters transport patients to Freeman and Mercy hospitals in Jasper County or to Level I facilities in Kansas City, Springfield, or other nearby regions, ensuring critical care is reached within the "golden hour."

Telemedicine Support for Immediate Trauma Assessment

Telemedicine allows Level II and III centers in Southwest Missouri to consult with trauma specialists in higher level centers, enabling real-time evaluation and advice on stabilization, which is particularly valuable in traffic crash cases involving complex injuries.

Data Collection and Quality Improvement

Trauma networks collect data on traffic crash injuries, response times, and patient outcomes to refine protocols and response times, specifically targeting improvement in crash trauma care. This data driven approach ensures resources are appropriately allocated, especially during high traffic times or in high-risk areas.

Public Health and Prevention Initiatives

Southwest Missouri trauma networks partner with public health agencies to promote road safety initiatives aimed at reducing traffic crashes. Campaigns on seat belt use, distracted driving, and impaired driving awareness help lower the number of serious injuries. Additionally, Vision Zero and other local safety initiatives target roadway improvements to mitigate crash trauma risks.

Benefits of Traffic Crash Trauma Networks for Southwest Missouri

Quick Access to Appropriate Care: These networks enhance response times, ensuring crash victims receive immediate onsite care and rapid transport to trauma facilities as needed. Effective Coordination: Trauma network protocols streamline communication between EMS, hospitals, and trauma centers to manage traffic related injuries efficiently. Continuous Improvement and Data Driven Insights: Through data collection on crash types, severity, and outcomes, the network can refine response strategies, making the region safer and more responsive to traffic crash traumas.

Existing Participation in Regional Traffic Crash Trauma Networks

In Southwest Missouri, Freeman Health System and Mercy Hospital Joplin work within trauma networks that span into Kansas City and Springfield. EMS agencies in Jasper, Newton, Barton, and McDonald counties coordinate closely with these facilities, ensuring efficient triage and transport. This collaboration is essential for managing the high risk and frequency of traffic crashes in both urban and rural areas, creating a cohesive approach to minimizing traffic crash related trauma and fatalities across county and state lines.

G.2 Directory of Emergency Resources for Southwest Missouri

This appendix provides a comprehensive list of trauma centers, hospitals, EMS facilities, and emergency medical responders in Jasper, Newton, Barton, and McDonald counties. Each entry includes contact details, types of services available, and any additional relevant information for coordinating emergency responses.

1. Jasper County Emergency Resources

1.1 Freeman Health System - West Campus

- Address: 1102 W 32nd St, Joplin, MO 64804

- Phone: (417) 347-1111

- Emergency Services: Level II Trauma Center, 24/7 Emergency Department, stroke and cardiac care, orthopedic emergency services

- Specialized Services: Comprehensive diagnostic imaging, surgical services, specialized care for trauma, pediatrics, and geriatrics

- Overview: Freeman Health System is a critical resource for Jasper County and surrounding areas, providing comprehensive trauma care and specialized medical services.

1.2 Mercy Hospital Joplin

- Address: 100 Mercy Way, Joplin, MO 64804

- Phone: (417) 556-2000

- Emergency Services: Level II Trauma Center, emergency and critical care, cardiac care unit, stroke care

- Additional Services: Helicopter transport available for critical cases, state-of-the-art burn treatment facilities

- Overview: Mercy Hospital Joplin offers extensive emergency services with immediate trauma care, particularly for severe and complex cases, making it an essential trauma center in the region.

1.3 Jasper County EMS

- Contact for Emergencies: (417) 358-4095 (dispatch via Carthage Fire Department)

- Service Area: Jasper County and surrounding communities

- Services Provided: Basic and Advanced Life Support (BLS/ALS), coordination with local hospitals for direct transport, on-site emergency response

- Overview: Jasper County EMS is a 24/7 service providing both immediate on-site medical intervention and transport to trauma centers.

2. Newton County Emergency Resources

2.1 Freeman Neosho Hospital

- Address: 113 W Hickory St, Neosho, MO 64850

- Phone: (417) 451-1234

- Emergency Services: 24/7 Emergency Department, minor trauma services, pediatric care

- Other Services: Routine surgical services, diagnostic imaging, outpatient services

- Overview: Freeman Neosho serves as the primary emergency and minor trauma facility in Newton County, offering critical services and diagnostics for acute care.

2.2 Newton County Ambulance District (NCAD)

- Address: 301 S Wood St, Neosho, MO 64850

- Phone: (417) 451-5419

- Emergency Services: EMS transport, paramedic services, ALS/BLS support, dispatch center for the county

- Overview: NCAD coordinates with local emergency departments to provide transport and

first-response medical services throughout Newton County.

3. Barton County Emergency Resources

- 3.1 Barton County Memorial Hospital
- Address: 29 NW 1st Ln, Lamar, MO 64759
- Phone: (417) 681-5100
- Emergency Services: 24/7 Emergency Department, minor trauma and acute care services
- Specialized Care: Wound care, diagnostic services, limited inpatient services

- Overview: Barton County Memorial Hospital provides critical emergency response, minor trauma care, and supportive services for the Lamar community and nearby regions.

3.2 Barton County Ambulance Service

- Address: 103 W 10th St, Lamar, MO 64759
- Phone: (417) 682-3529
- Emergency Services: EMS response, BLS and ALS, transportation to area hospitals

- Overview: This service supports Barton County residents by providing emergency

transport and pre-hospital medical intervention in coordination with Barton County Memorial and other regional facilities.

4. McDonald County Emergency Resources

- 4.1 Mercy McDonald County Hospital
- Address: 800 W Harmony St, Pineville, MO 64856
- Phone: (417) 223-8400
- Emergency Services: 24/7 Emergency Department, primary trauma and acute care

- Specialized Services: On-call surgical support, diagnostic and imaging capabilities, geriatric and pediatric care

- Overview: As the primary hospital in McDonald County, Mercy McDonald County Hospital offers emergency care and acts as a central resource for urgent medical needs in the area.

4.2 McDonald County EMS

- Address: 400 N Cliffside Dr, Pineville, MO 64856

- Phone: (417) 223-2154

- Emergency Services: Comprehensive EMS response, pre-hospital care, transport services

- Overview: McDonald County EMS offers critical response capabilities, often coordinating with Mercy McDonald County Hospital to ensure seamless emergency care and timely patient transport.

5. Additional Emergency Support Resources

Southwest Missouri Emergency Management Agency (SWMO EMA)

- Location: Various offices, contact through local county offices

- Phone: Varies by county (e.g., Jasper County EMA: (417) 623-5858)

- Services Provided: Emergency response coordination, disaster planning, community education

Missouri State Highway Patrol (Troop D) - For Emergency Assistance

- Phone: 1-800-525-5555 (road emergencies only)

- Services Provided: Road safety support, emergency response for vehicle crashes, hazardous materials incidents

Summary Table of Emergency Resources

Facility	Location	Contact Phone	Services Available
Freeman Health - West	Joplin, MO	(417) 347-1111	Level II Trauma, ER, stroke/cardiac care
Mercy Hospital Joplin	Joplin, MO	(417) 556-2000	Level II Trauma, critical care, burn unit
Freeman Neosho Hospital	Neosho, MO	(417) 451-1234	ER, minor trauma, pediatric care
Barton Memorial Hospital	Lamar, MO	(417) 681-5100	ER, minor trauma, wound care
Mercy McDonald Hospital	Pineville, MO	(417) 223-8400	ER, primary trauma, imaging
Jasper County EMS	Carthage, MO	(417) 358-4095	ALS/BLS, transport
Newton County Ambulance	Neosho, MO	(417) 451-5419	EMS transport, ALS/BLS
Barton County Ambulance	Lamar, MO	(417) 682-3529	EMS, transport services
McDonald County EMS	Pineville, MO	(417) 223-2154	EMS response, pre-hospital care

This directory should be used as a quick reference tool for coordinating emergency responses across Jasper, Newton, Barton, and McDonald counties. Each facility offers essential services critical to maintaining public health and safety, ensuring readiness in times of medical and trauma-related emergencies.

Appendix H: Statistical Sources

The development of this plan drew on a wide range of reputable sources, providing a foundation for evidence-based strategies tailored to Southwest Missouri's unique traffic safety needs. These sources offered critical data, research insights, and proven methodologies, ensuring that the plan aligns with national standards and incorporates effective practices for local implementation. The following resources were instrumental in shaping the plan:

Harry S. Truman Coordinating Council (HSTCC) resources, such as annual reports and regional traffic safety plans, provided foundational insights into local traffic patterns and strategic objectives.

The Federal Highway Administration (FHWA) contributed through studies like Intersection Safety and Roundabout Implementation Studies, detailing effective strategies for reducing crash risks and improving road safety.

National Highway Traffic Safety Administration (NHTSA) publications, including Traffic Safety Facts 2022, provided comprehensive crash data that informed our analysis of accident trends and the formulation of effective safety countermeasures.

Data from the Centers for Disease Control and Prevention (CDC), such as Vital Signs: Motor Vehicle Crash Deaths, highlighted the need for targeted safety initiatives to mitigate traffic fatalities both regionally and nationally.

Missouri Department of Transportation (MoDOT) resources, including MoDOT Crash Maps and the Missouri Statewide Traffic Crash Statistics 2019-2023, were invaluable for understanding crash hotspots and regional safety challenges. These tools provided visual and statistical context to support targeted interventions in high-risk areas.

Insurance Institute for Highway Safety (IIHS) research, notably the Bicyclist and Pedestrian Safety Report 2022, underscored the importance of measures to protect non-motorized road users and reduce crash severity.

The American Automobile Association (AAA) Foundation for Traffic Safety provided critical insights through reports like Impact of Speeding and Distracted Driving on Crash Risk, which shaped policy recommendations and public outreach programs.

The National Safety Council (NSC)'s Alive at 25 Program Guide informed the development of youth-focused safety education programs to reduce risky driving behaviors among young drivers.

Virginia Tech Transportation Institute (VTTI) studies, including Distracted Driving Research: Visual and Cognitive Distractions, emphasized the impact of driver inattention and helped craft strategies to combat distracted driving.

The Rural Emergency Medical Services and Trauma Technical Assistance Center (REMSTTAC) publication Improving Rural Emergency Response Coordination guided the

development of strategies to enhance emergency response and reduce delays in rural settings.

National Institute on Alcohol Abuse and Alcoholism (NIAAA) publications provided evidencebased research on the impact of alcohol on driving performance, supporting initiatives aimed at reducing impaired driving.

Pedestrian and Bicycle Information Center (PBIC) resources, such as Designing Safe Crosswalks and Protected Bike Lanes, reinforced the need for targeted infrastructure improvements to safeguard vulnerable road users.

The Commercial Vehicle Safety Alliance (CVSA)'s Operation Safe Driver Week Reports informed strategies to address high-risk behaviors among commercial drivers, contributing to safer roadways.

Missouri State Highway Patrol (MSHP) Traffic Safety Reports offered additional data on enforcement efforts and accident reports, supporting the identification of high-risk behaviors and areas requiring increased law enforcement.

Local Law Enforcement Traffic Data, including records from county sheriff departments and city police, provided ground-level perspectives on recurrent issues and community-specific challenges.

Traffic Volume and Speed Data from MoDOT and Regional Transportation Planning Partners, including speed studies and vehicle counts, informed the evaluation of traffic flow and speed management needs in key areas.

Local Health Department Reports contributed valuable insights on the public health impacts of traffic incidents, including injury trends and hospital data.

Public Feedback and Community Surveys conducted through various safety initiatives and community meetings helped tailor recommendations to local needs and preferences.

These combined resources supported the comprehensive and data-driven approach of this plan, enabling the identification of high-priority interventions and promoting a collaborative strategy for traffic safety improvements in Southwest Missouri.